FUJITSU SEMICONDUCTOR

CONTROLLER MANUAL

FR60 32-BIT MICROCONTROLLER MB91301 Series HARDWARE MANUAL

FR60 32-BIT MICROCONTROLLER MB91301 Series HARDWARE MANUAL

FUJITSU LIMITED

Objectives and Intended Reader

Thank you for using Fujitsu semiconductor products.

The MB91301 series is a standard microcontroller that has a 32-bit high-performance RISC CPU as well as built-in I/O resources and bus control mechanisms for embedded controller that requires high-performance and high-speed CPU processing. Although the MB91301 series basically uses external bus access to support a vast address space accessed by a 32-bit CPU, it has a 4 KB instruction cache memory and 4 KB RAM (for data) to increase the speed at which the CPU executes instructions.

The MB91301 series is most suitable for embedded applications, such as digital video cameras, navigation systems, and DVD players, that require a high level of CPU processing power.

The MB91301 series is one of the FR60 series of microcontrollers, which are based on the FR30/40 family of CPUs. It has enhanced bus access and is optimized for high-speed use.

This manual is intended for engineers who will develop products using the MB91301 series and describes the functions and operations of the MB91301 series. Read this manual thoroughly.

For more information on instructions, see the "Instructions Manual".

Trademarks

FR, which is an abbreviation of FUJITSU RISC controller, is a product of Fujitsu Limited.

License

Purchase of Fujitsu I^2C components conveys a license under the Philips I^2C Patent Rights to use, these components in an I^2C system provided that the system conforms to the I^2C Standard Specification as defined by Philips.

Structure of This Manual

This manual consists of the following 20 chapters and an appendix.

CHAPTER 1 OVERVIEW

This chapter provides basic information required to understand the MB91301 series, and covers features, a block diagram, and functions.

CHAPTER 2 HANDLING THE DEVICE

This chapter provides precautions on handling the MB91301 series.

CHAPTER 3 CPU AND CONTROL UNITS

This chapter provides basic information required to understand the functions of the MB91301 series. It covers architecture, specifications, and instructions.

CHAPTER 4 EXTERNAL BUS INTERFACE

The external bus interface controller controls the interfaces with the internal bus for chips and with external memory and I/O devices.

This chapter explains each function of the external bus interface and its operation.

CHAPTER 5 I/O PORT

This chapter describes the I/O ports and the configuration and functions of registers.

CHAPTER 6 16-BIT RELOAD TIMER

This chapter describes the 16-bit reload timer, the configuration and functions of registers, and 16-bit reload timer operation.

CHAPTER 7 PPG TIMER

This chapter describes the U-TIMER, the configuration and functions of registers, and U-TIMER operation.

CHAPTER 8 U-TIMER

This chapter describes the external interrupt and NMI controller, the configuration and functions of registers, and operation of the external interrupt and NMI controller.

CHAPTER 9 EXTERNAL INTERRUPT AND NMI CONTROLLER

This chapter describes the functions and operation of the delayed interrupt module.

CHAPTER 10 DELAYED INTERUPT MODULE

This chapter describes the interrupt controller, the configuration and functions of registers, and interrupt controller operation. It also presents an example of using the hold request cancellation request function.

CHAPTER 11 INTERRUPT CONTROLLER

This chapter describes the A/D converter, the configuration and functions of registers, and A/D converter operation.

CHAPTER 12 A/D CONVERTER

This chapter describes the UART, the configuration and functions of registers, and UART operation.

CHAPTER 13 UART

This chapter describes the I^2C interface, the configuration and functions of registers, and I^2C interface operation.

CHAPTER 14 DMA CONTROLLER (DMAC)

This chapter describes the DMA controller (DMAC), the configuration and functions of registers, and DMAC operation.

CHAPTER 15 BIT SEARCH MODULE

This chapter describes the bit search module, the configuration and functions of registers, and bit search module operation.

CHAPTER 16 I2C INTERFACE

This chapter describes the bit search module, the configuration and functions of registers, and bit search module operation.

CHAPTER 17 16-bit Free-run Timer

This chapter describes the bit search module, the configuration and functions of registers, and bit search module operation.

CHAPTER 18 Input Capture

This chapter describes the bit search module, the configuration and functions of registers, and bit search module operation.

CHAPTER 19 Program Loader Mode (Supported only by the MB91302A (IPL integrated model))

This chapter describes the bit search module, the configuration and functions of registers, and bit search module operation.

CHAPTER 20 Real - time OS Embedded MB91302A - 010 User's Guide

This chapter describes the bit search module, the configuration and functions of registers, and bit search module operation.

APPENDIX

This appendix consists of the following parts: I/O map, interrupt vector, pin states in the CPU state, notes on using a little endian area, and instruction lists. The appendix contains detailed information that could not be included in the main text and reference material for programming.

- The contents of this document are subject to change without notice.
- Customers are advised to consult with FUJITSU sales representatives before ordering.
 The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.
- Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
- The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

- Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage
 or loss from such failures by incorporating safety design measures into your facility and equipment such
 as redundancy, fire protection, and prevention of over-current levels and other abnormal operating
 conditions.
- If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

©2004 FUJITSU LIMITED Printed in Japan

How To Read This Manual

■ Terms Used in This Manual

The following defines principal terms used in this manual.

Term	Meaning
I-bus	32 bit bus for internal instructions. In the FR series, which is based on an internal Harvard architecture, independent buses are used for instructions and data. A bus converter is connected to the I-bus.
D-bus	Internal 32-bit data bus. An internal resource is connected to the D-bus.
F-bus	Internal instructions and data are multiplexed on a Princeton bus. The F-bus is connected to the I-bus and D-bus via a switch. The F-bus is connected to built-in resources such as ROM and RAM.
X-bus	External interface bus. The X-bus is connected to the external interface module. Data and instructions are multiplexed on an external bus.
R-bus	Internal 16-bit data bus. The R-bus is connected to the F-bus via an adapter. An I-O, clock generator, and interrupt controller are connected to the R-bus. Since addresses and data are multiplexed on an R-bus that is 16 bits wide, more than one cycle is required for the CPU to access these resources.
E-unit	Execution unit for operations.
CLKP	System clock. Clock generated by the clock generator for each of the internal resources connected to the R-bus. This clock has the same frequency as the source oscillation at its maximum, but becomes a 1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, or 1/16 (or 1/2, 1/4, 1/6, or 1/32) frequency clock as determined by the divide-by rate specified by the B3 to B0 bits in the clock generator DIVR0 register.
CLKB	System clock. Operating clock for the CPU and each of the other resources connected to a bus other than the R-bus and X-bus. This clock has the same frequency as the source oscillation at its maximum, but becomes a 1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7,, 1/16 (or 1/2, 1/4, 1/6,, 1/32) frequency clock as determined by the divided-by rate specified by the P3 to P0 bits in the clock generator DIVR0 register.
CLKT	System clock. Operating clock for the external resources connected to the X- bus. This clock has the same frequency as the source oscillation at its maximum, but becomes a 1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7,, 1/16 (or 1/2, 1/4, 1/6,, 1/32) frequency clock as determined by the divided-by rate specified by the T3 to T0 bits in the clock generator DIVR1 register.

vi

PREFACE How To Read This Manual

СНАРТ	ER 1 OVERVIEW	1
1.1	Features of the MB91301 Series	2
1.2	Block Diagram	7
1.3	External Dimensions	9
1.4	Pin Layout	. 11
1.5	Pin No. Table	. 13
1.6	List of Pin Functions	. 15
1.7	I/O Circuit Types	. 31
СНАРТ	ER 2 HANDLING THE DEVICE	35
2.1	Precautions on Handling the Device	. 36
2.2	Precautions on Handling Power Supplies	. 42
СНАРТ	ER 3 CPU AND CONTROL UNITS	43
3.1	Memory Space	. 44
3.2	Internal Architecture	. 47
3.3	Instruction Cache	. 52
3.3.1	Configuration of the Instruction Cache	. 53
3.3.2	Configuration of the Control Registers	. 56
3.3.3	Instruction Cache Statuses and Settings	. 60
3.3.4	Setting Up the Instruction Cache Before Use	. 62
3.4	Dedicated Registers	
3.4.1	Program Status (PS) Register	. 68
3.5	General-Purpose Registers	. 72
3.6	Data Structure	. 73
3.7	Word Alignment	. 74
3.8	Memory Map	. 75
3.9	Branch Instructions	. 76
3.9.1	Operation of Branch Instructions with Delay Slot	. 77
3.9.2		
3.10	EIT (Exception, Interrupt, and Trap)	. 81
3.10	1 EIT Interrupt Levels	. 82
3.10	2 Interrupt Control Register (ICR)	. 84
3.10	3 System Stack Pointer(SSP)	. 85
3.10	4 Table Base Register (TBR)	. 86
3.10	5 Multiple EIT Processing	. 90
3.10	6 EIT Operations	. 92
3.11	Reset (Device Initialization)	. 96
3.11	1 Reset Levels	. 97
3.11	2 Reset Sources	. 98
3.11	3 Reset Sequence	100
3.11	4 Oscillation Stabilization Wait Time	101
3.11	5 Reset Operation Modes	103

3.12	Clock Generation Control	. 105
3.12.1	PLL Controls	. 106
3.12.2	Oscillation Stabilization Wait Time and PLL Lock Wait Time	. 108
3.12.3	Clock Distribution	. 110
3.12.4	Clock Division	. 112
3.12.5	Block Diagram of Clock Generation Controller	. 113
3.12.6	Register of Clock Generation Controller	114
3.12.7	Peripheral Circuits of Clock Controller	. 128
3.13	Device State Control	. 131
3.13.1	Device States and State Transitions	133
3.13.2	Low-power Modes	136
3.14	Operating Modes	. 140
CHAPTE	R 4 EXTERNAL BUS INTERFACE	143
4.1	Overview of the External Bus Interface	144
4.2	External Bus Interface Registers	149
4.2.1	Area Select Registers 0-7(ASR0-7)	150
4.2.2	Area Configuration Registers 0-7 (ACR0-7)	152
4.2.3	Area Wait Register (AWR0-7)	
4.2.4	Memory setting register (MCRA for SDRAM/FCRAM auto - precharge OFF mode)	
4.2.5	Memory setting register (MCRB for FCRAM auto - precharge ON mode)	
4.2.6	I/O Wait Registers for DMAC (IOWR0, 1)	170
4.2.7	Chip Select Enable Register (CSER)	
4.2.8	Cache Enable Register (CHER)	
4.2.9	Pin/Timing Control Register (TCR)	
4.2.10		
4.3	Setting Example of the Chip Select Area	
	Endian and Bus Access	
4.4.1	Big Endian Bus Access	185
4.4.2	Little Endian Bus Access	. 192
4.4.3	Comparison of Big Endian and Little Endian External Access	197
4.5	Operation of the Ordinary bus interface	
4.5.1	Basic Timing	204
4.5.2	Operation of WRn + Byte Control Type	
4.5.3	Read -> Write Operation	. 207
4.5.4	Write -> Write Operation	. 208
4.5.5	Auto-Wait Cycle	. 209
4.5.6	External Wait Cycle	. 210
4.5.7	Synchronous Write Enable Output	
4.5.8	CSn Delay Setting	
4.5.9	CSn -> RD/WRn Setup and RD/WRn -> CSn Hold Setting	
4.5.10		
4.5.11		
4.6	Burst Access Operation	
	Address/data Multiplex Interface	
	Prefetch Operation	
	SDRAM/FCRAM Interface Operation	

4	1.9.1	Self Refresh	229
4	1.9.2	Power-on Sequence	230
4	1.9.3	Connecting SDRAM/FCRAM to Many Areas	231
4	1.9.4	Address Multiplexing Format	232
4	1.9.5	Memory Connection Example	234
4.1	10	DMA Access Operation	237
4	l.10.1	DMA Fly-By Transfer (I/O -> Memory)	238
4	1.10.2	2 DMA Fly-By Transfer (Memory -> I/O)	240
4	1.10.3	B DMA Fly-By Transfer (I/O -> SDRAM/FCRAM)	242
4	l.10.4	DMA Fly-By Transfer (SDRAM/FCRAM -> I/O)	244
4	1.10.5	5 2-Cycle Transfer (Internal RAM -> External I/O, RAM)	248
4	1.10.6	2-Cycle Transfer (External -> I/O)	249
4	l.10.7	2-Cycle Transfer (I/O -> External)	250
4	1.10.8	3 2-Cycle Transfer (I/O -> SDRAM/FCRAM)	251
4	1.10.9		
4.1	11	Bus Arbitration	254
4.1	12	Procedure for Setting a Register	256
4.1		Notes on Using the External Bus Interface	
		5	
СНА	PTE	R 5 I/O PORT	259
5.1		Overview of the I/O Port	
5.2		I/O Port Registers	
СНА	PTE	R 6 16-BIT RELOAD TIMER	271
6.1	1	Overview of the 16-bit Reload Timer	272
6.2	2	16-bit Reload Timer Registers	273
6	5.2.1	Control Status Register (TMCSR)	
6	5.2.2	16-bit Timer Register (TMR)	
6	5.2.3	16-bit Reload Register (TMRLR)	278
6.3	3	16-bit Reload Timer Operation	
6.4	1	Operating States of the Counter	
6.5		Precautions on Using the 16-bit Reload Timer	
СНА	PTE	R 7 PPG TIMER	283
7.1	1	Overview of PPG Timer	284
7.2		Block Diagram of PPG Timer	
7.3		Registers of PPG Timer	
	-	-	
	7.3.1	Control status registers (PCNH, PCNL)	288
	7.3.1 7.3.2	Control status registers (PCNH, PCNL)	
7	7.3.2	PPG cycle set register (PCSR)	292
7 7	7.3.2 7.3.3	PPG cycle set register (PCSR) PPG duty set register (PDUT)	292 293
7 7 7	7.3.2 7.3.3 7.3.4	PPG cycle set register (PCSR) PPG duty set register (PDUT) PPG timer register (PTMR)	292 293 294
7 7 7 7	7.3.2 7.3.3 7.3.4 7.3.5	PPG cycle set register (PCSR) PPG duty set register (PDUT) PPG timer register (PTMR) General control register 10 (GCN10)	292 293 294 295
7 7 7 7 7	7.3.2 7.3.3 7.3.4 7.3.5 7.3.6	PPG cycle set register (PCSR) PPG duty set register (PDUT) PPG timer register (PTMR) General control register 10 (GCN10) General control register 20 (GCN20)	292 293 294 295 298
7 7 7 7 7 7.4	7.3.2 7.3.3 7.3.4 7.3.5 7.3.6 4	PPG cycle set register (PCSR) PPG duty set register (PDUT) PPG timer register (PTMR) General control register 10 (GCN10) General control register 20 (GCN20) PPG Operation	292 293 294 295 298 299
7 7 7 7 7	7.3.2 7.3.3 7.3.4 7.3.5 7.3.6 4 5	PPG cycle set register (PCSR) PPG duty set register (PDUT) PPG timer register (PTMR) General control register 10 (GCN10) General control register 20 (GCN20) PPG Operation One-shot Operation	292 293 294 295 298 299 301
7 7 7 7 7.4 7.5	7.3.2 7.3.3 7.3.4 7.3.5 7.3.6 4 5 5	PPG cycle set register (PCSR) PPG duty set register (PDUT) PPG timer register (PTMR) General control register 10 (GCN10) General control register 20 (GCN20) PPG Operation	292 293 294 295 298 299 301 303

7.8	Notes	on Use of the PPG Timer	307
СНАР	TER 8	U-TIMER	309
8.1	Overv	iew of the U-TIMER	
8.2	U-TIM	ER Registers	
8.3	U-TIM	ER Operation	315
СНАР	TER 9	EXTERNAL INTERRUPT AND NMI CONTROLLER	317
9.1	Overv	iew of the External Interrupt and NMI Controller	
9.2	Exterr	nal Interrupt and NMI Controller Registers	
9.2	.1 Inte	errupt Enable Register (ENIR)	
9.2	.2 Ex	ternal Interrupt Source Register (EIRR)	
9.2	.3 Ex	ternal Interrupt Request Level Setting Register (ELVR)	
9.3	Opera	tion of the External Interrupt and NMI Controller	323
СНАР	TER 10	DELAYED INTERUPT MODULE	327
10.1	Overv	iew of the Delayed Interrupt Module	
10.2		ed Interrupt Module Registers	
10.3	-	tion of the Delayed Interrupt Module	
СНАР	TER 11	INTERRUPT CONTROLLER	331
11.1	Overv	iew of the Interrupt Controller	
11.2		upt Controller Registers	
11.:		errupt Control Register (ICR)	
11.:		Id Request Cancellation Request Level Setting Register (HRCL)	
11.3		upt Controller Operation	
11.4		ple of Using the Hold Request Cancellation Request Function (HRCR)	
CHAP	TER 12	A/D CONVERTER	347
12.1	Overv	iew of the A/D Converter	
12.2		onverter Registers	
12.		ntrol Status Register (ADCS)	
12.		ta Register (ADCR)	
		nversion result register (ADCR0 to 3)	
12.3		onverter Operation	
12.4		utions on the Using A/D Converter	
CHAP	TER 13	UART	361
13.1		iew of the UART	
13.2		Registers	
13.		rial Mode Register (SMR)	
13.		rial Control Register (SCR)	
13.		rial Input Data Register (SIDR)/Serial Output Data Register (SODR)	
13.		rial Status Register (SSR)	
13.		CL Register	
13.3		Operation	
13.3		ynchronous (Start-stop Synchronization) Mode	
		· · · · · · · · · · · · · · · · · · ·	

13.3	2 CLK Synchronous Mode	377
13.3	3 Occurrence of Interrupts and Timing for Setting Flags	379
13.4	Example of Using the UART	382
13.5	Example of Setting U-TIMER Baud Rates and Reload Values	
СНАРТ	ER 14 DMA CONTROLLER (DMAC)	385
14.1	Overview of the DMA Controller (DMAC)	
14.2	DMA Controller (DMAC) Registers	
14.2	1 Control/Status Registers A (DMACA0 to 4)	390
14.2	2 Control/Status Registers B (DMACB0 to 4)	395
14.2	5 5 (
14.2	4 DMAC All-Channel Control Register (DMACR)	
14.2		
14.3	DMA Controller (DMAC) Operation	407
14.3	1 Setting a Transfer Request	410
14.3	2 Transfer Sequence	411
14.3	3 General Aspects of DMA Transfer	415
14.3	4 Addressing Mode	417
14.3	5 Data Types	418
14.3	6 Transfer Count Control	419
14.3	7 CPU Control	420
14.3		
14.3	· · · · · · · · · · · · · · · · · · ·	
14.3	•	
	11 Channel Selection and Control	
	12 Supplement on External Pin and Internal Operation Timing	
14.4	Operation Flowcharts	
14.5	Data Bus	
14.6	DMA External Interface	
14.6	· · · · · · · · · · · · · · · · · · ·	
14.6	2 FR30 Compatible Mode of DACK	441
CHAPT	ER 15 BIT SEARCH MODULE	443
15.1	Overview of the Bit Search Module	
15.2	Bit Search Module Registers	445
15.3	Bit Search Module Operation	447
СНАРТ	ER 16 I ² C INTERFACE	449
16.1	Overview of the I ² C Interface	450
16.2	I ² C Interface Registers	
16.3	Block Diagram of I ² C Interface	
16.4	Detailed on Registers of the I ² C Interface	454
16.5	I ² C Interface Operation	469
16.6	Operation Flowcharts	474
СНАРТ	ER 17 16-bit Free-run Timer	477

17.1	Overview of 16-bit Free-run Timer	478
17.2	Registers of the 16-bit Free-run Timer	479
17.3	Block Diagram of the 16-bit Free-run Timer	480
17.4	Details on Registers of the 16-bit Free-run Timer	481
17.5	Operation of the 16-bit Free-run Timer	485
17.6	Precautions on Using the 16-bit Free-run Timer	487
СНАРТ	ER 18 Input Capture	489
18.1	Overview of Input Capture	490
18.2	Input Capture Registers	491
18.3	Block Diagram of Input Capture	492
18.4	Details on Registers of Input Capture	493
18.5	Operation of 16-bit Input Capture	495
СНАРТ	ER 19 Program Loader Mode (Supported only by the MB91302A	(IPL integrated
	model))	497
19.1	Overview of the Program Loader Mode	498
19.2	Setting the Program Loader	499
19.3	Operations in the Program Loader Mode	501
19.4	Example of Using the Program Loader Mode to Write to Flash Memory	512
СНАРТ	ER 20 Real - time OS Embedded MB91302A - 010 User's Guide	515
20.1	Introduction	516
20.2	Memory Map	517
20.3	Specifications for REALOS/FR Embedded in MB91302A-010	518
20.4	Section Allocation	520
20.5	Startup Routine	521
20.6	Initial Settings for SOFTUNE Workbench and REALOS/FR	522
20.7	Mode Pins, Mode Vectors, and Reset Vectors	530
20.8	Chip Evaluation System	533
APPEN	DIX	535
APPE	NDIX A I/O MAP	536
APPE	NDIX B INTERRUPT VECTOR	548
APPE	NDIX C PIN STATE IN EACH CPU STATE	552
APPE	NDIX D NOTES ON USING A LITTLE ENDIAN AREA	566
D.1	C Compiler (fcc911)	567
D.2	Assembler (fasm911)	570
D.3	Linker (flnk911)	572
D.4	Debugger (sim911, eml911, mon911)	
APPE	NDIX E INSTRUCTION LISTS	
E.1	How to Read the Instruction Lists	575
E.2	FR Family Instruction Lists	579

This chapter provides basic information required to understand the MB91301 series, and covers features, a block diagram, and functions.

- 1.1 "Features of the MB91301 Series"
- 1.2 "Block Diagram"
- 1.3 "External Dimensions"
- 1.4 "Pin Layout"
- 1.5 "Pin No. Table"
- 1.6 "List of Pin Functions"
- 1.7 "Input-output Circuit Forms"

1.1 Features of the MB91301 Series

The MB91301 series is a standard single-chip microcontroller that has a 32-bit highperformance RISC CPU as well as built-in I/O resources and bus control mechanisms for embedded controller requiring high-performance and high-speed CPU processing. Although the MB91301 series basically uses external bus access to support a vast address space accessed by a 32-bit CPU, it has a 4 KB instruction cache memory and 4 KB RAM to increase the speed at which the CPU executes instructions.

This model is an FR60 series model that is based on the FR30/40-family of CPUs. It has enhanced bus access and is optimized for high-speed use.

The MB91301 series is most suitable for embedded applications, such as digital video cameras, navigation systems, and DVD players, that require a high level of CPU processing power.

■ Features of the MB91301 Series

The MB91301 series has the line-up of series embedde the each of program in built-in ROM.

ROM variation Products	Real time OS internal version	IPL (internal program loader) internal version	User ROM version	No ROM version
MB91302A	0	0	0	0
MB91301	Х	Х	Х	0

FR CPU

- 32-bit RISC, load/store architecture, five pipelines
- Operating frequency of 68 MHz (Internal maximum value), 68 MHz (External maximum value) [PLL used, original oscillation at 17 MHz]
- 32-bit general-purpose register x 16
- 16-bit fixed-length instructions (basic instructions), one instruction per cycle
- Memory-to-memory transfer, bit processing, instructions, including barrel shift, etc.; instructions appropriate for embedded applications
- Function entry and exit instructions, multi load/store instructions--instructions compatible with high-level languages
- Instructions for entry/exit functions, multiple load/store instructions for the register contents, instructions for high-level languages.
- · Register interlock function to facilitate assembly-language coding
- Branch instruction with a delay slot allowing a decrease in overhead for branch processing
- · Built-in multiplier/instruction-level support
 - Signed 32-bit multiplication: 5 cycles
 - Signed 16-bit multiplication: 3 cycles
- Interrupts (saving of PC and PS): 6 cycles, 16 priority levels

Bus Interface

- Maximum operating frequency of 68 MHz (at using SRAM)
- 24-bit address can be fully output (16 MB space)
- 8-, 16- and 32-bit data I/O
- Prefetch buffer installed
- Unused data and address pins can be used as general-purpose I/O ports.
- Totally independent 8-area chip select output that can be defined at a minimum of 64 KB
- Support of interfaces for various memory modules
 - Asynchronous SRAM, asynchronous ROM/FLASH
 - Page-mode ROM/FLASHROM (a page-size of 1, 2, 4, or 8 can be selected)
 - Burst-mode ROM/FLASH (MBM29BL160D/161D/162D etc.)
 - SDRAM (or FCRAM type, CAS Latency1 to 8, 2/4 bank product)
 - Address/data multiplexed bus (8 bit/16 bit width only)
- Basic bus cycle: 2 cycles
- Automatic wait cycle generator (Max 15 cycles) that can be programmed for each area and can insert waits
- External wait cycles due to RDY input
- Endian setting of byte ordering (big/little) CS0 are, however, is only big endian
- Write disable setting (read only data)
- Enable/disable set of captureing to the built-in cache
- Enable/disable set of prefetch function
- Supports fly-by DMA transfer that enables independent I/O wait control
- External bus arbitration using BRQ and BGRNT is enabled

Built-in Memory

- DATA RAM: 4KB
- ROM: 4FB (MB91302A)

Built-in 8KB DATA RAM and 8 KB DATA/Instruction RAM in MB91V301

Built-in 8 KB DATA RAM, 8 KB DATA/instruction RAM and 8 KB emulation RAM in MB91V301A

Instruction Cache

- Capacity of 4 KB
- 2 way set associative
- 128 block/way, 4 entry (4 words)/block
- Lock function allows specific program codes to stay resident in cache
- · Instruction RAM function: A part of the instruction cache not in use can be used as RAM

DMAC (DMA Controller)

5 channels (2 channels for external to request)

- 3 transfer sources (external pins, internal peripherals, software)
- Internal peripheral can be selected at each channel as the transfer factor
- Addressing mode with 32-bit full address specifications (increase, decrease, fixed)
- Transfer modes (demand transfer, burst transfer, step transfer, block transfer)
- Fly-by transfer supported (three channels between external I/O and external memory)
- Transfer data size that can be selected from 8, 16, and 32 bits

Bit Search Module

• Searches for the position of the first bit varying between 1 and 0 in the MSB of a word

Reload Timer (including One Channel for REALOS)

- 16-bit timer; 3 channels
- Internal clock: 2-clock cycle resolution, selectable from 2, 8 or 32 dividen frequency

UART

- UART full-duplex double buffer
- Independent 3 channels
- Data length: 7 to 9 bits (no parity), 8 to 8 bits (parity)
- Either asynchronous (start-stop synchronization) or CLK synchronous communication can be selected.
- Multi processor mode
- Built-in 16-bit timer (U-TIMER) as boud rate generater: generatin arbitrary baud rates
- An external clock can be used as the transfer clock.
- Error detection functions (parity, frame, overrun)

Interrupt Controller

- Total of 9 external interrupts (one unmaskable pin (NMI) and eight regular interrupt pins (INT7 to INT0))
- Internal interrupt source: UART, DMAC, A/D, UTIMER, delay interrupt, I²C, free-running timer and ICU
- The I²C, free running timer, and ICU are sources unique to the MB91302A and MB91V301A.
- Priority level can be defined as programmable (16 levels) except for the unmaskable pin

■ A/D Converter (sequential conversion type)

- 10-bit resolution, 4 channels
- Sequential comparison and conversion type: peripheral clock (CLKP) 140 clock cycle conversion time (about 4.1 μ s/ch at 34MHz operating)
- Built-in sample and hold circuit
- Conversion modes (single-shot conversion mode, scan conversion mode, and repeat conversion mode)

- · Causes of startup (select from software, external triggers, and internal timer)
- I²C Interface
 - Master/slave transmission and reception
 - Clock synchronization function
 - Arbitration function
 - The I²C bus interface is only for MB91302A, MB91301A.

Free Run Timer

- 16-bit 1channel
- Input capture 4 channels
- Free run timer is only for MB9130A an MB91V301A.

Other Interval Timers

- 16-bit timer: 3 channels (U-TIMER)
- PPG timer: 4channels
- Watchdog timer; 1 channel

Other Features

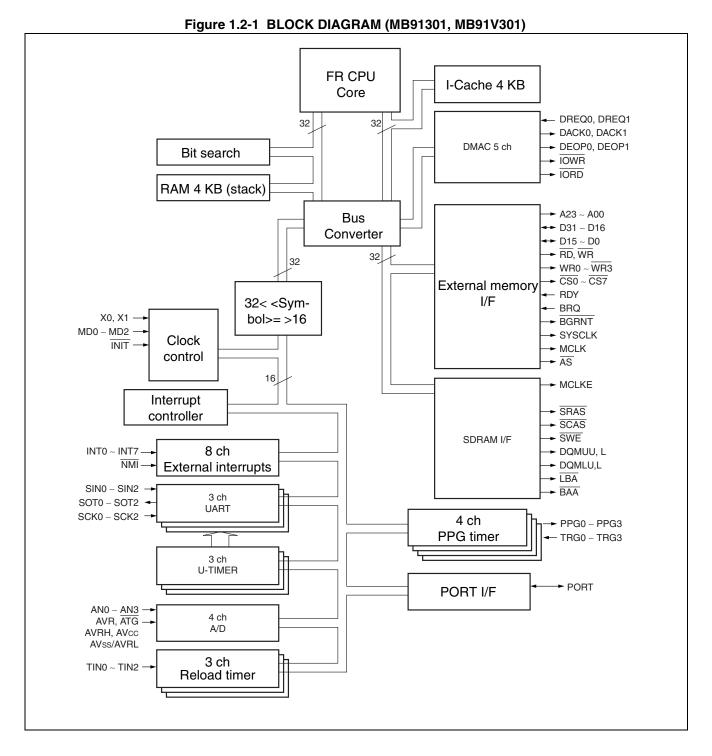
- Has a built-in oscillation circuit as a clock source for which PLL multiplication can be selected.
- INIT is provided as a reset pin.
- · Additionally, a watchdog timer reset and software resets are provided.
- Stop mode and sleep mode supported as low-power modes
- Gear function

Allows arbitrary different operating clock frequencies to be set for the CPU and peripherals. The gear clock factor can be selected from among 16 options: 1/1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8,...., 1/16. Note that the maximum operating frequency of peripherals is 34 MHz.

- Built-in time base timer
- Packages
 - MB91301/302A (FPT-144P-M12)
 - MB91V301/V301A (PGA-179C-A03)
- CMOS technology
 - 0.25 μm
- Power voltages
 - Power supply (analog power supply): 3.3 V ± 0.3 V (at using internal regulator)
- On chip Device Support Unit (DSU4) is installed in MB91V301/V301A.

Product Line-up

	MB91301	MB91V301	MB91302A	MB91V301A
Туре	External ROM version (for volume production)	Evaluation version (For evaluation and de- velopment)	Mask ROM product (for volume production)	Evaluation version (For evaluation and de- velopment)
RAM	4 KB (only for data)	16 KB (data 8 KB+8 KB)	4 KB (only for data)	16 KB (data 8 KB+8 KB)
ROM	-	- 4 KB ROM has non-ROM model, the optimal real time OS internal model* ¹ , and the IPL (Internal Program Loader) internal mod- el* ² by adding the user ROM model.		8 KB (RAM)
DSU	-	DSU4	-	DSU4
Package	LQFP-144 (0.4 mm pitch)	PGA-179	LQFP-144 (0.4 mm pitch)	PGA-179
Other	Currently in production	Currently available	Currently in production	Currently available

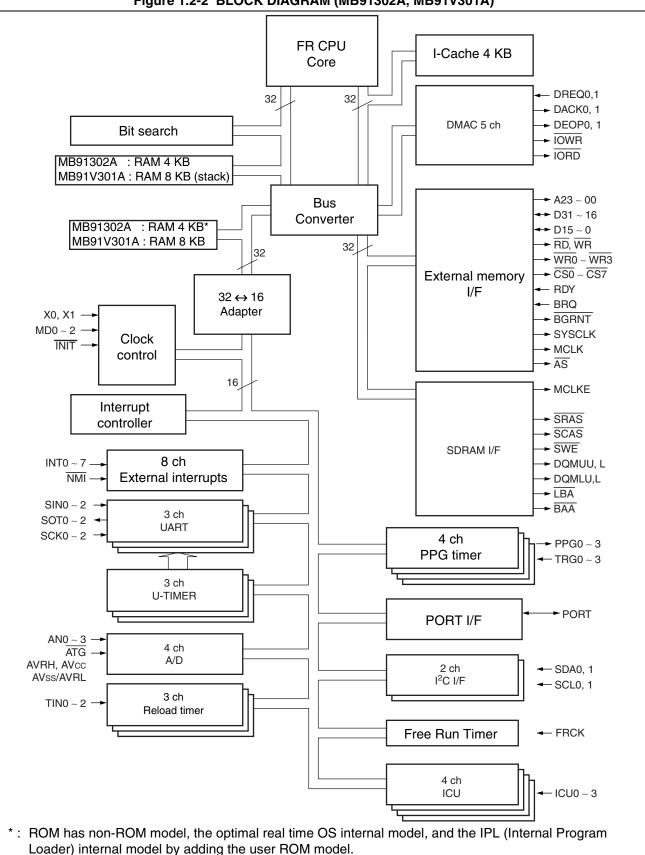
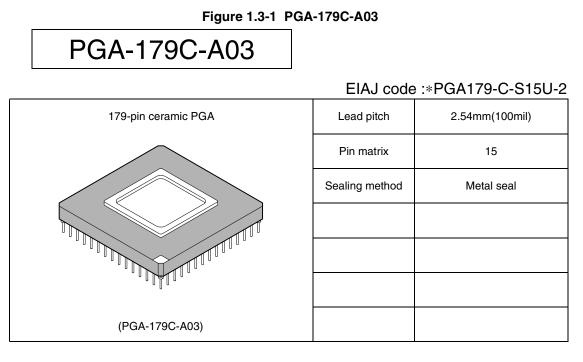

*1: The Fujitsu product of real time OS REALOS/FR by conforming to the μITORN 3.0 is stored and optimized with the MB91302A. For details of built-in service call type and the specification of user task, see "CHAPTER 20 Real - time OS Embedded MB91302A - 010 User's Guide" and following manual;

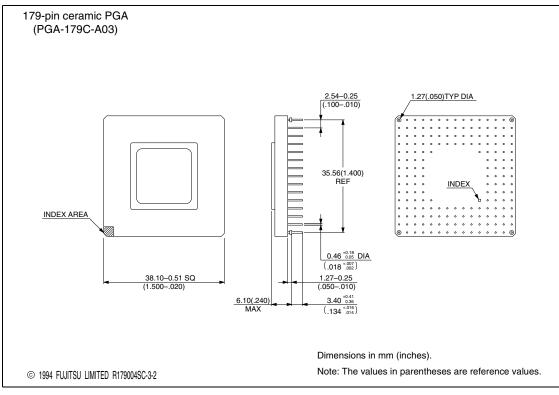
- FR FAMILY SOFTUNE REALOS/ FR USER'S GUIDE
- FR FAMILY SOFTUNE REALOS/ FR KERNEL MANUAL
- + FR-V/ FR FAMILY CONFORMING TO $\mu ITRON4.0$ SPECIFICATIONS SOFTUNE REALOS CONFIGURATOR MANUAL
- FR-V/ FR/ F²MC FAMILY SOFTUNE REALOS ANALYZER MANUAL
- 2: The ROM stores the IPL (Internal Program Loader). Loading various programs can be executed from the external system by the internal UART/SIO. Using this function, for example, writing on board to the Flash memory connected to the external can be executed.

1.2 Block Diagram

Figure 1.2-1 "Block Diagram" is a block diagram of the MB91301 series.

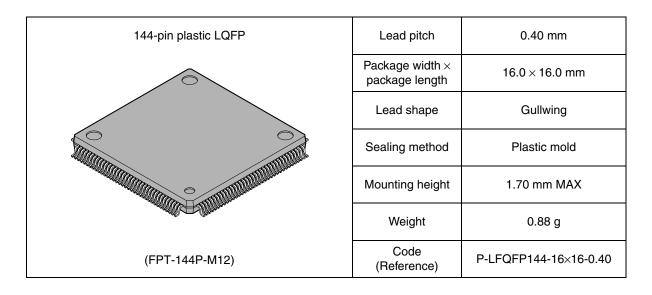
Block Diagram


Figure 1.2-2 BLOCK DIAGRAM (MB91302A, MB91V301A)

1.3 External Dimensions

The MB91301 series is available in one type of package.


Dimensions

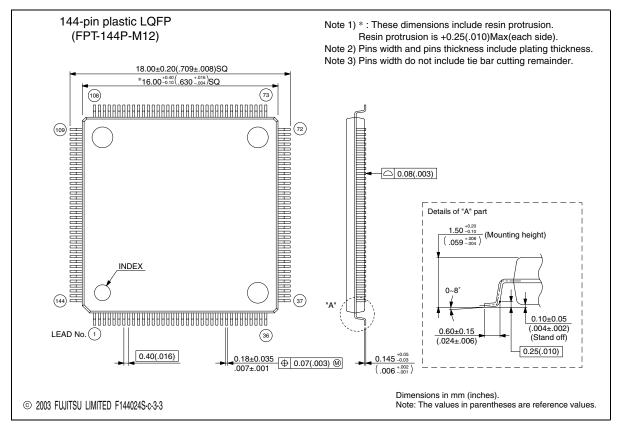


Figure 1.3-2 FPT-144P-M12

FPT-144P-M12

1.4 Pin Layout

This section shows the pin layout of the MB91301 series.

■ Pin Layout of the MB91V301/V301A

Figure 1.4-1 "Pin Layout of the MB91V301/V301A" is a diagram of the pin layout of the MB91V301/V301A.

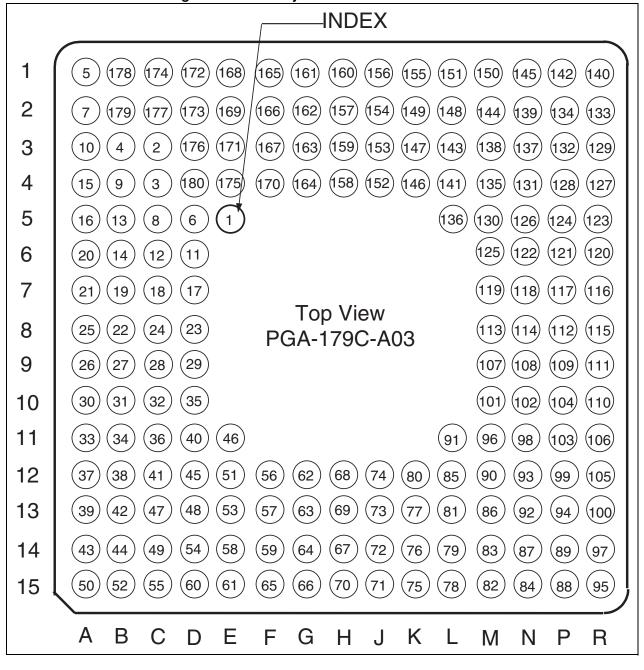
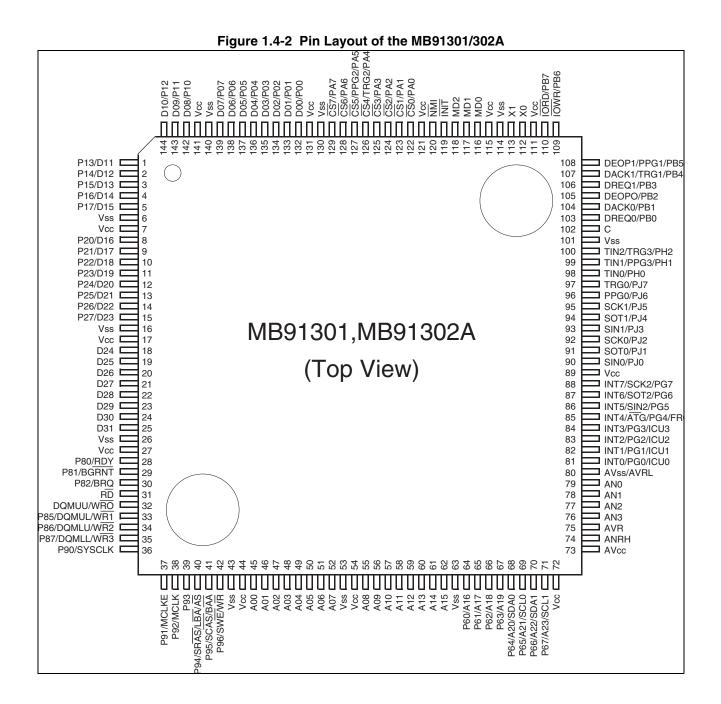



Figure 1.4-1 Pin Layout of the MB91V301/V301A

■ Pin Layout of the MB91301/302A

1.5 Pin No. Table

The pin No. table of the MB91V301/V301A is shown.

Pin No. Table

Table 1.5-1 MB91V301/V301A Pin No. Table (Package: PGA-179C-A03)

No.	PIN	Pin Name	No.	PIN	Pin Name	No.	PIN	Pin Name
1	E5	N.C.	31	B10	V _{SS}	61	E15	A07
2	C3	P13/D11	32	C10	V _{CC}	62	G12	V _{SS}
3	C4	V _{SS}	33	A11	P80/RDY	63	G13	V _{CC}
4	B3	V _{CC}	34	B11	P81/BGRNT	64	G14	A08
5	A1	P14/D12	35	D10	P82/BRQ	65	F15	A09
6	D5	P15/D13	36	C11	RD	66	G15	A10
7	A2	P16/D14	37	A12	DQMUU/WR0	67	H14	A11
8	C5	P17/D15	38	B12	P85/DQMUL/WR1	68	H12	A12
9	B4	V _{SS}	39	A13	P86/DQMLU/WR2	69	H13	A13
10	A3	V _{CC}	40	D11	P87/DQMLL/WR3	70	H15	A14
11	D6	P20/D16	41	C12	V _{SS}	71	J15	A15
12	C6	P21/D17	42	B13	V _{CC}	72	J14	V _{SS}
13	B5	P22/D18	43	A14	P90/SYSCLK	73	J13	V _{CC}
14	B6	P23/D19	44	B14	P91/MCLKE	74	J12	P60/A16
15	A4	P24/D20	45	D12	P92/MCLK	75	K15	P61/A17
16	A5	P25/D21	46	E11	P93	76	K14	P62/A18
17	D7	P26/D22	47	C13	V _{SS}	77	K13	P63/A19
18	C7	P27/D23	48	D13	V _{CC}	78	L15	SDA0/P64/A20 SDA0;MB91V301A only
19	B7	V _{SS}	49	C14	P94/SRAS/LABA/AS	79	L14	SCL0/P65/A21 SCL0;MB91V301A only
20	A6	V _{CC}	50	A15	P95/SCAS/BAA	80	K12	SDA1/P66/A22 SDA1;MB91V301A only
21	A7	D24	51	E12	P96/SWE/WR	81	L13	SCL1/P67/A23 SCL1;MB91V301A only
22	B8	D25	52	B15	V _{SS}	82	M15	V _{CC}
23	D8	D26	53	E13	V _{CC}	83	M14	V _{CC}
24	C8	D27	54	D14	A00	84	N15	EWR3
25	A8	V _{SS}	55	C15	A01	85	L12	EWR2
26	A9	V _{CC}	56	F12	A02	86	M13	EWR1
27	B9	D28	57	F13	A03	87	N14	EWR0
28	C9	D29	58	E14	A04	88	P15	ECS
29	D9	D30	59	F14	A05	89	P14	EMRAM
30	A10	D31	60	D15	A06	90	M12	ICD3

No.	PIN	Pin Name	No.	PIN	Pin Name	No.	PIN	Pin Name
91	L11	ICD2	121	P6	SOT0/PJ1	151	L1	V _{CC}
92	N13	ICD1	122	N6	SCK0/PJ2	152	J4	INIT
93	N12	ICD0	123	R5	SIN1/PJ3	153	J3	NMI
94	P13	V _{SS}	124	P5	SOT1/PJ4	154	J2	V _{SS}
95	R15	V _{CC}	125	M6	SCK1/PJ5	155	K1	V _{CC}
96	M11	BREAK	126	N5	PPG0/PJ6	156	J1	CS0/PA0
97	R14	ICLK	127	R4	TRG0/PJ7	157	H2	CS1/PA1
98	N11	ICS2	128	P4	TIN0/PH0	158	H4	CS2/PA2
99	P12	ICS1	129	R3	TIN1/PPG3/PH1	159	H3	CS3/PA3
100	R13	ICS0	130	M5	TIN2/TRG3/PH2	160	H1	CS4/TRG2/PA4
101	M10	TRST	131	N4	V _{SS}	161	G1	CS5/PPG2/PA5
102	N10	С	132	P3	С	162	G2	CS6/PA6
103	P11	AV _{CC}	133	R2	DREQ0/PB0	163	G3	CS7/PA7
104	P10	AVRH	134	P2	DACK0/PB1	164	G4	V _{SS}
105	R12	AVR	135	M4	DEOP0/PB2	165	F1	V _{CC}
106	R11	AN3	136	L5	DREQ1/PB3	166	F2	D00/P00
107	M9	AN2	137	N3	DACK1/TRG1/PB4	167	F3	D01/P01
108	N9	AN1	138	М3	DEOP1/PPG1/PB5	168	E1	D02/P02
109	P9	AN0	139	N2	IOWR/PB6	169	E2	D03/P03
110	R10	AV _{SS} /AVRL	140	R1	IORD/PB7	170	F4	V _{SS}
111	R9	INT0/PG0/ICU0 ICU0;MB91V301A only	141	L4	V _{CC}	171	E3	V _{CC}
112	P8	INT1/PG1/ICU1 ICU1;MB91V301A only	142	P1	V _{SS}	172	D1	D04/P04
113	M8	INT2/PG2/ICU2 ICU2;MB91V301A only	143	L3	X0	173	D2	D05/P05
114	N8	INT3/PG3/ICU3 ICU3;MB91V301A only	144	M2	X1	174	C1	D06/P06
115	R8	INT4/ATG/PG4/FRCK FRCK;MB91V301A only	145	N1	V _{SS}	175	E4	D07/P07
116	R7	INT5/SIN2/PG5	146	K4	V _{CC}	176	D3	V _{SS}
117	P7	INT6/SOT2/PG6	147	K3	MD0	177	C2	V _{CC}
118	N7	INT7/SCK2/PG7	148	L2	MD1	178	B1	D08/P10
119	M7	V _{CC}	149	K2	MD2	179	B2	D09/P11
120	R6	SIN0/PJ0	150	M1	V _{CC}	180	D4	D10/P12

1.6 List of Pin Functions

This section describes the pin functions of the MB91301 series.

Description of Pin Functions

Table 1.6-1 lists the pin of the MB91301 series and their functions.

Table 1.6-1	List of	pin function (except for	power supp	oly, and GND p	oins)
-------------	---------	----------------	------------	------------	----------------	-------

Pin no.		Pin name	I/O circ	uit type	Function
MB91301/ 302A	MB91V301/ V301A		MB91301, MB91V301	MB91302A, MB91V301A	
132 to 139	166 to 169, 172	D00 to D07	J		External data bus bits 0 to 7. It is available in the external bus mode.
	to 175	P00 to P07			Can be used as ports in 8-bit or 16-bit external bus mode.
142 to 144,	178 to 180, 2, 5	D08 to D15	J		External data bus bits 08 to 15. It is available in the external bus mode.
1 to 5	to 8	P10 to P17			Can be used as ports in 8-bit or 16-bit external bus mode.
8 to 15	11 to 18	D16 to D23	J		External data bus bits 16 to 23. It is available in the external bus mode.
		P20 to P27			Can be used as ports in 8-bit external bus mode.
18 to 25	21 to 24, 27 to 30	D24 to D31	С		External data bus bits 24 to 31. It is available in the external bus mode.
28	33	RDY		J	[RDY] External ready input. The pin has this function when external ready input is enabled. Active level is "H".
		P80			[P80] General purpose input/output port. The pin has this function when external ready input is disabled.
29	34	BGRNT		J	[BGRNT] Acknowledge output for external bus release. Outputs "L" when the external bus is released. The pin has this function when output is enabled.
		P81			[P81] General purpose input/output port. The pin has this function when output is disabled for external bus release acknowledge.

Pin no.		Pin name	I/O circ	uit type	Function
MB91301/ 302A	MB91V301/ V301A		MB91301, MB91V301	MB91302A, MB91V301A	
30	35	BRQ	J		[BRQ] External bus release request input. Input "1" to request release of the external bus. The pin has this function when input is enabled.
		P82			[P82] General purpose input/output port. The pin has this function when the external bus release request input is disabled.
31	36	RD	С		[RD] External bus read strobe output. This pin is enabled at external bus mode.
32	37	WR0/ DQMUU	C		[WR0] External bus write strobe output. This pin is enabled at external bus mode. When WR is used as the write strobe, this becomes the byte-enable pin (UUB). Select signal (DQMUU) of D31 to D24 at using of SDRAM.
33	38	WR1/ DQMUL	J		$[\overline{WR1}]$ External bus write strobe output. The pin has this function when $\overline{WR1}$ output is enabled. When $\overline{WR1}$ is used as the write strobe, this becomes the byte-enable pin (ULB).
		P85			[P85] General purpose input/output port. The pin has this function when the external bus write-enable output is disabled.
34	39	WR2/ DQMLU	J		$[\overline{WR2}]$ External bus write strobe output. The pin has this function when $\overline{WR2}$ output is enabled. When $\overline{WR2}$ is used as the write strobe, this becomes the byte-enable pin (\overline{LUB}).
		P86			[P86] General purpose input/output port. The pin has this function when the external bus write-enable output is disabled.

Table 1.6-1 List of pin function (except for power supply, and GND pins)

Pin no.		Pin name I/O circuit type		Function	
MB91301/ 302A	MB91V301/ V301A		MB91301, MB91V301	MB91302A, MB91V301A	
35	40	WR3/ DQMLL	J		$[\overline{WR3}]$ External bus write strobe output. The pin has this function when $\overline{WR3}$ output is enabled. When $\overline{WR3}$ is used as the write strobe, this becomes the byte-enable pin (\overline{LLB}).
		P87			[P87] General purpose input/output port. The pin has this functions when the external bus write-enable output is disabled.
36	43	SYSCLK	(C	[SYSCLK] System clock output. The pin has this function when system clock output is enabled. This outputs the same clock as the external bus operating frequency. (Output halts in stop mode.)
		P90			[P90] General purpose input/output port. The pin has this function when system clock output is disabled.
37	44	MCLKE		J	[MCLKE] Clock enable signal for memory.
		P91			[P91] General purpose input/output port. The pin has this function when clock enable output is disabled.
38	45	MCLK		C	[MCLK] Memory clock output. The pin has this function when memory clock output is enabled. This outputs the same clock as the external bus operating frequency. (Output halts in stop and sleep mode.)
		P92			[P92] General purpose input/output port. The pin has this function when memory clock output is disabled.
39	46	P93	(0	[P93] General purpose input/output port.

 Table 1.6-1
 List of pin function (except for power supply, and GND pins)

Pin no.		Pin name	Pin name I/O circuit type		Function	
MB91301/ 302A	MB91V301/ V301A		MB91301, MB91V301	MB91302A, MB91V301A		
40	49 AS J		$[\overline{AS}]$ Address strobe output. The pin has this function without EDRAM area, when \overline{ASE} bit of port function register 9 is enabled.			
		LBA			[LBA] Address strobe output for burst flash ROM. The pin has this function in normal accessed area that is set over "1", when ASE bit of port function register 9 is enabled.	
		SRAS			[SRAS] RAS single for SDRAM. This pin has this function for accessing to SDRAM area, when ASE bit of port function register 9 is enabled.	
		P94			[P94] General purpose input/output port. The pin has this function, when ASE bit of port function register 9 is set as the general purpose port.	
41	50	BAA		J	[BAA] Address advance output for burst Flash ROM. The pin has this function when BAAE bit of port functior register is enabled.	
		SCAS			[SCAS] CAS signal for SDRAM. This pin has this function in SDRAM area, when BAAE bit of port function register is enabled.	
		P95			[P95] General purpose input/output port. The pin has this function when BAAE bit of port function register is general purpose port.	
42	51	WR		J	[WR] Memory write strobe output. This pin has this function when WEXE bit of port function register is enabled.	
		SWR			[SWR] Write output for SDRAM. This pin has this function when WEXE bit of port function register is enabled.	
		P96			[P96] General purpose input/output port. This pin has this function when WEXE bit of port function register is general purpose port.	
45 to 52	54 to 61	A00 to A07		С	External address bit 0 to 7.	
55 to 62	64 to 71	A08 to A15		С	External address bit 8 to 15.	

Table 1.6-1 List	of pin function (except for	power supply,	and GND pins)
------------------	-------------------	------------	---------------	---------------

Pin	Pin no.		I/O circuit type		Function
MB91301/ 302A	MB91V301/ V301A		MB91301, MB91V301	MB91302A, MB91V301A	
64 to 67	74 to 77	A16 to A19	J		External address bit 16 to 19. It can be used as ports when external address bus is unused.
		P60 to P63			Can be used as ports when external bus is 8-bit mode.
68	78	SDA0	-	Т	[SDA0] Data I/O pin for I ² C bus. This function is enable when typical operation of I ² C is enable. The port output must remain off unless intentionally turned on. (Open drain output) (This function is only for MB91302A, MB91V301A.)
		A20	J		[A20] External address bus bit 20. This function is enable during prohibited I ² C operation and using external bus.
		P64			[P64] General-purpose I/O port. This function is enable during prohibited I ² C and nonused external address bus.
69	79	SCL0	-	т	[SCL0] CLK I/O pin for I ² C bus. This function is enable when typical operation of I ² C is enable. The port output must remain off unless intentionally turned on. (open drain output) (This function is only for MB91302A, MB91V301A.)
		A21	J		[A21] External address bit 21. This function is enable during prohibited I ² C operation and using external bus.
		P65			[P65] General-purpose I/O port. This function is enable during prohibited I ² C and nonused external address bus.

 Table 1.6-1
 List of pin function (except for power supply, and GND pins)

Pin no.		Pin name	I/O circ	uit type	Function	
MB91301/ 302A	MB91V301/ V301A		MB91301, MB91V301	MB91302A, MB91V301A		
70	80	SDA1	-	Т	[SDA1] DATA I/O pin for I ² C bus. This function is enable when typical operation of I ² C is enable. The output must remains off unless intentionally turned on. (open drain output) (This function is only for MB91302A, MB91V301A.)	
		A22	J		[A22] External address bit 20. This function is enable during prohibited I ² C operation and using external bus.	
		P66			[P66] General-purpose I/O port. This function is enable during prohibited I ² C and nonused external address bus.	
71	81	SCL1	-	т	[SCL1] CLK I/O pin for I ² C bus. This function is enable when typical operation of I ² C is enable. The port output must remains off unless intentionally turned on. (open drain output) (This function is only for MB91302A, MB91V301A.)	
		A23	J		[A23] External address bit 21. This function is enable during prohibited I ² C operation and unusing external address bus.	
		P67			[P67] General-purpose I/O port. This function is enable during prohibited I ² C operation and nonused external address bus.	
76 to 79	106 to 109	AN0 to AN4	I)	Analog input pin.	

Table 1.6-1 List of pin function (except for power supply, and GND pins)

Pin	no.	Pin name	I/O circuit type		Function
MB91301/ 302A	MB91V301/ V301A		MB91301, MB91V301	MB91302A, MB91V301A	
81 to 84	111 to 114	INT0 to INT3	L	V	[INT0 to INT3] External interrupt inputs. These inputs are used continuously when the corresponding external interrupt is enabled. In this case, do not output to these ports unless doing so intentionally. Refer to "Chapter 9 Figure 9.3-2" for active level settiing.
		PG0 to PG3			[PG0 to PG3] General purpose input/ output ports.
		ICU0 to ICU3	-		[ICU0 to ICU3] Input capture input pins. These inputs are used continuously when selected as input capture inputs. In this case, do not output to these ports unless doing so intentionally. (This function is only for MB91302A and MB91V301A.)
85	115	INT4	L	V	[INT4] External interrupt input. These inputs are used continuously when the corresponding external interrupt is enabled. In this case, do not output to these ports unless doing so intentionally. Refer to "Chapter 9 Figure 9.3-2" for active level settiing.
		ĀTG			[ATG] External trigger input for A/D converter. This input is used continuously when selected as the A/D converter start trigger. In this case, do not output to this port unless doing so intentionally.
		PG4			[PG4] General purpose input/output ports.
		FRCK	-		[FRCK] External clock input pin of free- run timer. These inputs are used continuously when using as external clock input pin of free-run timer. In this case, do not output to these ports unless doing so intentionallt. (This function is only for MB91302A and MB90V301A.

Table 1.6-1 List of pin function (except for power supply, and GND pins)

Pin no.		Pin name	I/O circ	uit type	Function
MB91301/ 302A	MB91V301/ V301A		MB91301, MB91V301	MB91302A, MB91V301A	
86	116	INT5	L	V	[INT5] External interrupt input. These inputs are used continuously when the corresponding external interrupt is enabled. In this case, do not output to these ports unless doing so intentionally. Refer to "Chapter 9 Figure 9.3-2" for active level settiing.
		SIN2			[SIN2] UART2 data input pin. This input is used continuously when UART2 is performing input. In this case, do not output to this port unless doing so intentionally.
		PG5			[PG5] General purpose input/output port.
87	117	INT6	L	V	[INT6] External interrupt input. This input is used continuously when the corresponding external interrupt is enabled. In this case, do not output to these ports unless doing so intentionally. Refer to "Chapter 9 Figure 9.3-2" for active level settiing.
		SOT2			[SOT2] UART2 data output pin. The pin has this function when UART2 data output is enabled.
		PG6			[PG6] General purpose input/output port.
88	118	INT7	L	V	[INT7] External interrupt input. This input is used continuously when the corresponding external interrupt is enabled. In this case, do not output to these ports unless doing so intentionally. Refer to "Chapter 9 Figure 9.3-2" for active level settiing.
		SCK2			[SCK2] UART2 clock input/output pin. The pin has this function when UART2 clock output is enabled.
		PG7			[PG7] General purpose input/output port.

Table 1.6-1 List of pin function (except for power supply, and GND pins)

Pin	no.	Pin name	I/O circ	cuit type	Function
MB91301/ 302A	MB91V301/ V301A		MB91301, MB91V301	MB91302A, MB91V301A	
90	120	SINO	К	U	[SIN0] UART0 data input pin. This input is used continuously when UART0 is performing input. In this case, do not output to this port unless doing so intentionally.
		PJ0			[PJ0] General purpose input/output port.
91	121	SOT0	J	U	[SOT0] UART0 data output pin. The pin has this function when UART0 data output is enabled.
		PJ1			[PJ1] General purpose input/output port.
92	122	SCK0	К	U	[SCK0] UART0 clock input/output pin. The pin has this function when UART0 clock output is enabled.
		PJ2			[PJ2] General purpose input/output port.
93	123	SIN1	К	U	[SIN1] UART1 data input pin. This input is used continuously when UART1 is performing input. In this case, do not output to this port unless doing so intentionally.
		PJ3			[PJ3] General purpose input/output port.
94	124	SOT1	J	U	[SOT1] UART1 data output pin. The pin has this function when UART1 data output is enabled.
		PJ4			[PJ4] General purpose input/output port.
95	125	SCK1	К	U	[SCK1] UART1 clock input/output pin. The pin has this function when UART1 clock output is enabled.
		PJ5			[PJ5] General purpose input/output port.
96	126	PPG0	L	U	[PPG0] PPG timer output. This pin has this function when PPG0 output is enabled.
		PJ6			[PJ6] General purpose input/output port.

 Table 1.6-1
 List of pin function (except for power supply, and GND pins)

Pin no.		Pin name I/O circuit type			Function
MB91301/ 302A	MB91V301/ V301A		MB91301, MB91V301	MB91302A, MB91V301A	
97	127	TRG0	J	U	[TRG0] External trigger input for PPG timer. This input is used continuously when the corresponding timer input is enabled. In this case, do not output to this port unless doing so intentionally. Refer to "Chapter 7 EGS1, EGS0: Trigger input edge select bit" for active level setting.
		PJ7			[PJ7] General purpose input/output port.
98	128	TINO	J		[TIN0] Reload timer input. This input is used continuously when the corresponding timer input is enabled. In this case, do not output to this port unless doing so intentionally. Refer to "Chapter 6 MOD2, MOD1 and MOD0 operating mode select bit" for active level.
		PH0			[PH0] General purpose input/output port.
99	129	TIN1	J		[TIN1] Reload timer input. This input is used continuously when the corresponding timer input is enabled. In this case, do not output to this port unless doing so intentionally. Refer to "Chapter 6 MOD2, MOD1 and MOD0 operating mode select bit" for active level.
		PPG3			[PPG3] PPG timer output. The pin has this function when PPG3 output is enabled.
		PH1			[PH1] General purpose input/output port.

Table 1.6-1 List of pin function (except for power supply, and GND pins)

Pin	no.	Pin name	I/O circ	cuit type	Function
MB91301/ 302A	MB91V301/ V301A		MB91301, MB91V301	MB91302A, MB91V301A	
100	130	TIN2		J	[TIN2] Reload timer input. This input is used continuously when the corresponding timer input is enabled. In this case, do not output to this port unless doing so intentionally. Refer to "Chapter 6 MOD2, MOD1 and MOD0 operating mode select bit" for active level.
		TRG3			[TRG3] External trigger input for PPG timer. This input is used continuously when the corresponding timer input is enabled. In this case, do not output to this port unless doing so intentionally. Refer to "Chap 7 EGS1, EGS0: Trigger input edge select bit" for active level setting.
		PH2			[PH2] General purpose input/output port.
103	133	DREQ0	J		[DREQ0] External input for DMA transfer requests. This input is used continuously when the corresponding external input for DMA transfer requests are enabled. In this case, do not output to this port unless doing so intentionally. Refer to "14.3.1 Setting a Transfer Request" for active level setting.
		PB0			[PB0] General purpose input/output port.
104	134	DACK0		J	[DACK0] External acknowledge output for DMA transfer requests. The pin has this function when external acknowledge output for DMA transfer requests is enabled.
		PB1			[PB1] General purpose input/output port.
105	135	DEOP0		J	[DEOP0] Completion output for DMA external transfer. The pin has this function when tompletion output for DMA external transfer is enabled.
		PB2			[PB2] General purpose input/output port.

 Table 1.6-1
 List of pin function (except for power supply, and GND pins)

Pin	Pin no.		I/O circ	cuit type	Function
MB91301/ 302A	MB91V301/ V301A		MB91301, MB91V301	MB91302A, MB91V301A	
106	136	DREQ1		J	[DREQ1] External input for DMA transfer requests. This input is used continuously when external input for DMA transfer request is enabled. In this case, do not output to this port unless doing so intentionally. Refer to "14.3.1 Setting a Transfer Request" for active level.
		PB3			[PB3] General purpose input/output port. The pin has this function when completion output and stop input are disabled for DMA transfer.
107	137	DACK1		J	[DACK1] External acknowledge output for DMA transfer requests. The pin has this function when external acknowledge output for DMA transfer requests is enabled.
		TRG1			[TRG1] External trigger input for PPG timer. This input is used continuously when the corresponding timer input is enabled. In this case, do not output to this port and external acknowledge output for DMA transfer request unless doing so intentionally.
		PB4			[PB4] General purpose input/output port.
108	138	DEOP1		J	[DEOP1] Completion output for DMA external transfer. The pin has this function when completion output for DMA external transfer is enabled.
		PPG1			[PPG1] PPG timer output. The pin has this function when PPE1 bit is enabled.
		PB5			[PB5] General purpose input/output port.
109	139	IOWR		С	[IOWR] Write strobe output for DMA fly-by transfer. The pin has this function when outputting a write strobe for DMA fly-by transfer is enabled.
		PB6			[PB6] General purpose input/output port. The pin has this function when outputting a write strobe for DMA fly-by transfer is disabled.

Table 1.6-1 List of pin function (except for power supply, and GND pins)

Pir	n no.	Pin name	I/O circuit type		Function
MB91301/ 302A	MB91V301/ V301A		MB91301, MB91V301	MB91302A, MB91V301A	
110	140	IORD		J	[IORD] Read strobe output for DMA fly- by transfer. The pin has this function when outputting a read strobe for DMA fly-by transfer is enabled.
		PB7			[PB7] General purpose input/output port. The pin has this function when outputting a read strobe for DMA fly-by transfer is disabled.
112	143	X0	ļ	A	Clock (oscillation) input.
113	144	X1	ŀ	A	Clock (oscillation) output.
116 to 118	147 to 149	MD0 to MD2	С		[MD0 to MD2] Mode pins to 0 to 2. The levels applied to these pins set the basic operating mode. Connect $\rm V_{CC}$ or $\rm V_{SS}.$
119	152	INIT	С		External reset input (Reset to initialize settings) ("L" active)
120	053	NMI	М		NMI (Non Maskable Interrupt) input ("L" active)
122	156	CS0		J	[CS0] Chip select 0 output. The pin has this function when CS0 area of CSER (Chip Select Enable Register) is enabled and the specified CS0XE bit of port function register is enabled.
		PA0			[PA0] General purpose input/output port. The pin has this function when CS0XE bit of port function register is general purpose port.
123	157	CS1		J	$[\overline{CS1}]$ Chip select 1 output. The pin has this function when CS1 area of CSER is enabled and the specified CS1XE bit of port function register is enabled.
		PA1			[PA1] General purpose input/output port. The pin has this function when chip select 1 output is disabled.
124	158	CS2		J	$[\overline{CS2}]$ Chip select 2 output. The pin has this function when CS2 area of CSER is enabled and the specified CS2XE bit of port function register is enabled.

Table 1.6-1 List of pin function (except for power supply, and GND pins)

PA2

[PA2] General purpose input/output port. The pin has this function when

chip select 2 output is disabled.

Pin	Pin no. Pin name I/O circuit type		uit type	Function	
MB91301/ 302A	MB91V301/ V301A		MB91301, MB91V301	MB91302A, MB91V301A	
125	159	CS3		J	$[\overline{CS3}]$ Chip select 3 output. The pin has this function when CS3 area of CSER is enabled and the specified CS3XE bit of port function register is enabled.
		PA3			[PA3] General purpose input/output port. The pin has this function when chip select 3 output is disabled.
126	160	CS4	J		$[\overline{CS4}]$ Chip select 4 output. The pin has this function when CS4 area of CSER is enabled and the specified CS4XE bit of port function register is enabled.
		TRG2			[TRG2] External trigger input for PPG timer. This input is used continuously when the corresponding timer input is enabled. In this case, do not output to chip select and this port unless doing so intentionally. Refer to "Chap 7 EGS1, EGS0 trigger input edge select bit" for active level setting.
		PA4			[PA4] General purpose input/output port. The pin has this function when chip select 4 output is disabled.
127	161	CS5		J	$[\overline{CS5}]$ Chip select 5 output. The pin has this function when CS5 area of CSER is enabled and the specified CS5XE bit of port function register is enabled.
		PPG2			[PPG2] PPG timer output. The pin has this function when PPE2 bit is enabled.
		PA5			[PA5] General purpose input/output port. The pin has this function when chip select 5 output and PPG timer output are disabled.
128	162	CS6		J	$[\overline{CS6}]$ Chip select 6 output. The pin has this function when CS6 area of CSER is enabled and the specified CS6XE bit of port function register is enabled.
		PA6			[PA6] General purpose input/output port. The pin has this function when chip select 6 output are disabled.

Table 1.6-1 List of pin function (except for power supply, and GND pins)

Pin no.		Pin name I/O circuit type		uit type	Function
MB91301/ 302A	MB91V301/ V301A		MB91301, MB91V301	MB91302A, MB91V301A	
129	163	CS7	J		[CS7] Chip select 7 output. The pin has this function when CS7 area of CSER is enabled and the specified CS7XE bit of port function register is enabled.
		PA7			[PA7] General purpose input/output port. The pin has this function when chip select 7 output is disabled.

Table 1.6-1 List of pin function (except for power supply, and GND pins)

* : Shaded pins are only present on the MB91V301.

Table 1.6-2 Power supply and GND pins

	Pin no.	Pin name	Function
MB91301/302A	MB91V301/V301A		
6, 16, 26, 43, 53, 63, 101, 114, 130, 140	3, 9, 19, 25, 31, 41, 47, 52, 62, 72, 94, 131, 142, 145, 154, 164, 170, 176	V _{SS}	GND pins. Connect all pins at the same potential.
7, 17, 27, 44, 54, 72, 89, 111, 121, 115, 131, 141	4, 10, 20, 26, 32, 42, 48, 53, 63, 73, 82, 83, 95, 119, 141, 146, 150, 151, 155, 165, 171, 177	V _{CC}	3 V power supply pins. Connect all pins at the same potential.
73	103	AV _{CC}	Analog power supply pin for A/D converter
74	104	AVRH	Reference power supply pin for A/D converter
75	105	AVR	Capacitor coupling pin for the A/D converter
80	110	AV _{SS} /AVRL	Analog GND pin for A/D converter
-	1	OPEN	Open pin. Use at open
102	102, 132	С	Capacitor coupling pin for the internal regulator

Table 1.6-3 Tool pins

Pin no.		Pin name	I/O circuit	Function
MB91301/302A	MB91V301/V301A		type	
-	97	ICLK	S	Clock output
-	101	TRST	Q	Tool reset

Table 1.6-3 Tool pins

Pi	Pin no.		I/O circuit	Function
MB91301/302A	MB91V301/V301A		type	
-	98 to 100	ICS2 to ICS0	N	Device status output (during TRC) DSU4 operation status output (during EML)
-	90 to 93	ICD3 to ICD0	R	Trace information output (during TRC) Program/data I/O (duuring EML)
-	96	BREAK	Р	DSU4 break reqest input
-	89	EMRAM	0	Emulation memory detection
-	88	ECS	N	Chip select for emuration memory
-	84 to 87	EWR3 to EWR0	N	Write strobe for emuration memory

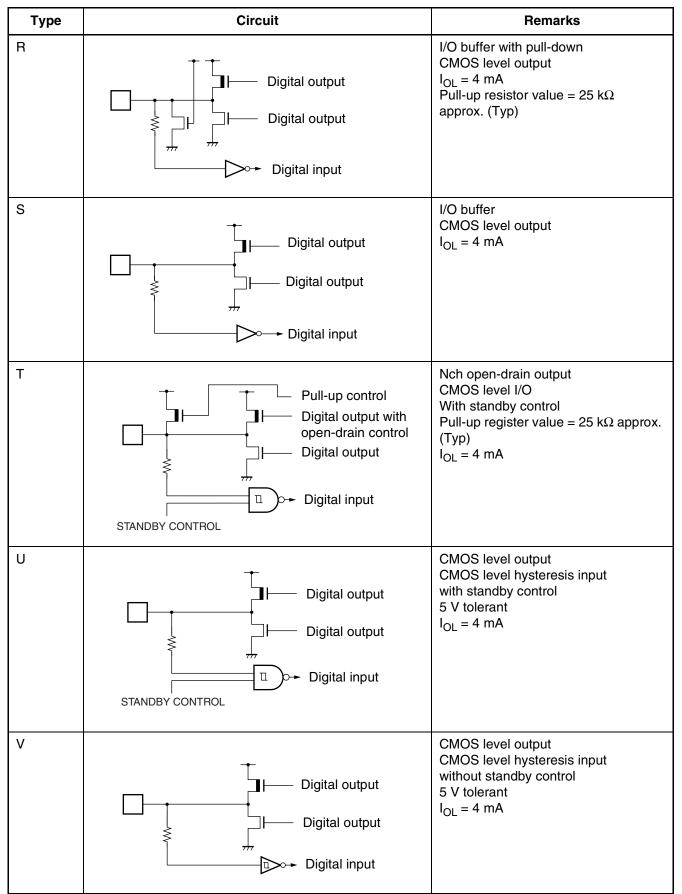
1.7 I/O Circuit Types

This section describes the I/O circuit types.

■ I/O Circuit Types

Table 1.7-1 I/O Circuit Types

Туре	Circuit	Remarks
A	X1 Clock input	Oscillation feedback resistance approx. 1 MΩ
В	Digital input	CMOS hysteresis input with pull-up resistor Pull-up resistor value = 25 kΩ approx. (Typ)
C	Digital output Digital output Digital output Digital input Standby control	CMOS level I/O with standby control I _{OL} = 4 mA


Table 1.7-1 I/O Circuit Types (Continued)

Туре	Circuit	Remarks
D	Analog input Channel control	Analog input With switch
G	Digital input	CMOS level output No standby control
J	Pull-up control	With Pull-up control Pull-up resistor value = $25 \text{ k}\Omega$ approx. (Typ) CMOS level I/O with standby control With Pull-up control I _{OL} = 4 mA
К	Pull-up control	With Pull-up control Pull-up resistor value = $25 \text{ k}\Omega$ approx. (Typ) CMOS level output CMOS level hysteresis input with standby control $I_{OL} = 4 \text{ mA}$

Туре	Circuit	Remarks
L	Pull-up control	With Pull-up control Pull-up resistor value = $25 \text{ k}\Omega$ approx. (Typ) CMOS level output CMOS level hysteresis input no standby control $I_{OL} = 4 \text{ mA}$
М	Digital input	CMOS level hysteresis input no standby control
N	Digital output	Output buffer CMOS level output I _{OL} = 4 mA
0	□	Input buffer CMOS level input
P	Digital input	Input buffer with pull-down Pull-down resistor value = 25 kΩ approx. (Typ)
Q	Digital input	Input buffer with Pull-up Pull-up resistor value = 25 kΩ approx. (Typ)

Table 1.7-1 I/O Circuit Types (Continued)

CHAPTER 2 HANDLING THE DEVICE

This chapter provides precautions on handling the MB91301 series.

- 2.1 "Precautions on Handling the Device"
- 2.2 "Precautions on Handling Power Supplies"

2.1 Precautions on Handling the Device

This section contains information on preventing a latch up and on the handling of pins.

Preventing a Latch up

A latch up can occur if, on a CMOS IC, a voltage higher than V_{CC} or a voltage lower than V_{SS} is applied to an input or output pin or a voltage higher than the rating is applied between V_{CC} and V_{SS} . A latch up, if it occurs, significantly increases the power supply current and may cause thermal destruction of an element. When you use a CMOS IC, be very careful not to exceed the maximum rating.

Handling of Pins

The following are precautions on treating various pins and on quartz oscillation circuits.

O Unused input pins

Do not leave an unused input pin open, since it may cause a malfunction. Handle by, for example, using a pull-up or pull-down resistor.

O Power supply pins

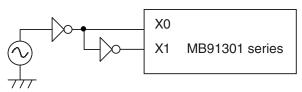
If more than one V_{CC} or V_{SS} pin exists, those that must be kept at the same potential are designed to be connected to one other inside the device to prevent malfunctions such as latch up. Be sure to connect the pins to a power supply and ground external to the device to minimize undesired electromagnetic radiation, prevent strobe signal malfunctions due to an increase in ground level, and conform to the total output current rating. Given consideration to connecting the current supply source to V_{CC} or V_{SS} of the device at the lowest impedance possible.

It is also recommended that a ceramic capacitor of around 0.1 μ F be connected between V_{CC} and V_{SS} at circuit points close to the device as a bypass capacitor.

O Quartz oscillation circuit

Noise near the X0 or X1 pin may cause the device to malfunction. Design printed circuit boards so that X0, X1, the quartz oscillator (or ceramic oscillator), and the bypass capacitor to ground are located as near to one another as possible.

It is strongly recommended that printed circuit board artwork that surrounds the X0 and X1 pins with ground be used to increase the expectation of stable operation.


O External clock

When using an external clock, in general supply it to the X0 pin while also supplying a reversephase clock to the X1 pin simultaneously. In this case, do not use the STOP mode (oscillation stop mode), use an external resistor of about 1 k Ω to be inserted, since the X1 pin stops with H level output in STOP mode and collision between the outputs must be prevented.

Additionally, the X0 pin can be used only if an external clock is supplied at 12.5 MHz.

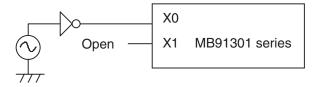

The following figure shows an example of using an external clock.

Figure 2.1-1 Using an external clock (normal)

Note: Stop mode (oscillation stop mode) can not be used.

Figure 2.1-2 Using an external clock (less than 12.5 MHz)

O Treatment of NC and OPEN pins

Pins marked as "NC" or "OPEN" must be left open-circuit.

• Mode pins (MD0 to MD2)

These pins must be directly connected to V_{CC} or V_{SS} when they are used. Keep the pattern length between a mode pin on a printed circuit board and V_{CC} or V_{SS} as short as possible so that they can be connected at a low impedance.

Precautions on Use

O MB91301 series

O Clock controller

Reservea regulator wait time or an oscillation stabilization wait time when an L-level signal is input to INIT.

O Notes on during operation of PLL clock mode

If the PLL clock mode is selected, the microcontroller attempt to be working with the selfoscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

O MCLK and SYSCLK

MCLK is stopped in sleep and stop modes, and SYSCLK is stopped only in stop mode. Use MCLK and SYSCLK appropriately according to the purpose of use.

O Pull-up resistor control

If a pull-up resistor is connected to a pin to be used as an external bus pin, the AC ratings cannot be guaranteed.

Even a port that already has a pull-up resistor is invalid in stop mode (HIZ = 1) and hardware standby mode.

O Bit search module

Only word access is allowed for the BSD0, BSD1, and BDSC registers.

O Low power consumption mode

(1) Be sure to use the following sequences after using the same period standby mode (TBCR: Set by time base counter control register bit8 SYNCS bit) when putting in the standby mode.

(LDI	#value_of_standby, R0)				
(LDI	#_STCR, R12	2)			
STB	R0, @12)	// Writing to standby control register (STCR)			
LDUB	@R12, R0	<pre>// STCR read for synchronous standby</pre>			
LDUB	@R12, R0	<pre>// Dummy re - read of STCR</pre>			
NOP		// five NOPs for timing adjustment			
NOP					

In addition, please set I flag, ILM, and ICR to diverge to the interruption handler that is the return factor after the standby returns.

- (2) Do not do the following when the monitor debugger is used.
 - Set the break point to the above mentioned instruction row.
 - Execute the step for the above mentioned instruction row.

O Prefetch

When allowing prefetch from an area that has been set as a little endian area, limit access to the area to word access (i.e., access in units of 32 bits).

The area cannot be accessed correctly by byte or half-word accesses.

O I/O port access

Only byte accesses are allowed to I/O ports.

O Switching the function of a common port

Use the port function register (PFR) to switch the function of a pin which also serves as a port. However, use an external bus setting to switch the function of a bus pin.

O D-bus memory

Do not set a code area in D-bus memory.

No instruction fetch is performed to the D-bus.

Instruction fetches to the D-bus area result in incorrect data interpreted as code, which can cause the microcontroller to lose control.

Do not set a data area in I-bus memory.

O I-bus memory

Do not set a stack area or vector table in I-bus memory.

It may cause a hang during EIT processing (including RETI).

Recovery from the hang requires a reset.

Do not perform DMA transfer to I-bus memory.

O Notes on the PS register

Since some instructions manipulate the PS register earlier, the following exceptions may cause the interrupt handler to break or the PS flag to update its display setting when the debugger is being used. As the microcontroller is designed to carry out reprocessing correctly upon returning from such an EIT event, it performs operations before and after the EIT as specified in either case.

- The following operations may be performed when the instruction immediately followed by a DIVOU/DIVOS instruction is (a) halted by a user interrupt or NMI, (b) single-stepped, or (c) breaks in response to a data event or emulator menu:
- 1. D0 and D1 flags are updated earlier.
- 2. The EIT handler (user interrupt/NMI or emulator) is executed.
- 3. Upon returning from the EIT, the DIVOU/DIVOS instruction is executed and the D0 and D1 flags are updated to the same values as those in (1) above.
- The following operations are performed when the ORCCR/STILM/MOV Ri and PS instructions are executed to enable interruptions when a user interrupt or NMI trigger event has occurred.
- 1. The PS register is updated earlier.
- 2. The EIT handler (user interrupt/NMI) is executed.
- 3. Upon returning from the EIT, the above instructions are executed and the PS register is updated to the same value as that in (1) above.

○ R15 (General purpose register)

When any of the following instructions is executed, the SSP* or USP* value is not used as R15, resulting in an incorrect value written to memory.

AND	R15, @Ri	ANDH	R15, @Ri	ANDB	R15, @Ri
OR	R15, @Ri	ORH	R15, @Ri	ORB	R15, @Ri
EOR	R15, @Ri	EORH	R15, @Ri	EORB	R15, @Ri
XCHB	@Rj, R15				

* : R15 is a virtual register. When a program attempts to access R15, the SSP or USP is accessed depending on the status of the "S" flag as an SP flag. When coding the above ten instructions using an assembler, specify a general-purpose register other than R15.

O RETI instruction

Please do not neither control register of the instruction cache nor the data access to RAM of the instruction cache immediately before the instruction of RETI.

O Watchdog timer function

The watchdog timer function of this model monitors whether a program holds over a reset within a specified time. It also resets the CPU if the reset is not held over because of uncontrollable program operation. After the watchdog timer function is enabled, it keeps operating until a reset occurs.

The watchdog timer function usually holds over CPU reset automatically when program execution by the CPU stops. For the relevant exception conditions, see "3.12.7 Peripheral Circuits of Clock Controller".

The reset by the watchdog timer function might not occur if the above status is caused by uncontrollable system operation. If it might occur, a reset (INIT) request must be input from the external INIT pin.

O A/D converter

When the device is turned on or returns from a reset or stop, it takes time for the external capacitor to be charged, requiring the A/D converter to wait for at least 10 ms.

■ Unique to the evaluation chip MB91V301/301A

O Tool reset

On an evaluation board, use the chip with INIT and TRST connected together.

• Single-stepping the RETI instruction

If an interrupt occurs frequently during single stepping, execute only the relevant processing routine repeatedly after single-stepping RETI. This will prevent the main routine and low-interrupt-level programs from being executed. Do not single-step the RETI instruction for avoidance purposes. When the debugging of the relevant interrupt routine becomes unnecessary, perform debugging with that interrupt disabled.

○ Simultaneous occurrences of a software break and a user interrupt/NMI

When a software break and a user interrupt /NMI take place at the same time, the emulator debugger can cause the following phenomena:

- The debugger stops pointing to a location other than the programmed breakpoints.
- The halted program is not re-executed correctly.

If these phenomena occur, use a hardware break instead of the software break. If the monitor debugger has been used, avoid setting any break at the relevant location.

O Operand break

A stack pointer placed in an area set for a DSU operand break can cause a malfunction. Do not apply a data event break to access to the area containing the address of a system stack pointer.

○ ICE startup sequence

When using the ICE, when you start debugging, ensure that the bus configuration is set correctly for the area being used before downloading. After turning on the power to the target, the states of the RDX and WR0X to WR3X pins are undefined until you perform the above setting. Accordingly, include enabling pull-up as part of the startup sequence. If using these pins as general-purpose ports, set as output ports to prevent conflict with the output signals during the time the pin states are undefined.

External bus width Pin name	32 bit	16 bit	8 bit
RD	Pull-up	Pull-up	Pull-up
WR0	Pull-up	Pull-up	Pull-up
WR1 (P85)	Pull-up	Pull-up	*
WR2 (P86)	Pull-up	*	*
WR3 (P87)	Pull-up	*	*

* : Use as output ports.

O Configuration batch file

The example batch file below sets the mode vector and sets up the CS0 configuration register for the download area. Use values appropriate to the hardware in the wait, timing, and other settings.

# Set MODF	R (0x7fd) =Enable In memory+16 bit External Bus e 0x7fd=0x5
# Set ASR0	(0x640); 0x0010_0000 - 0x002f_ffff fword 0x640=0x0010
# Set ACR0	(0x642)
# #	; ASZ [3:0]=0101:2 MByte ; DBW [1:0]=01:16 bit width, automatically set from
MODR # #	; BST [1:0]=00:1 burst (16 bit x 2) ; SREN=0:Disable BRQ
# #	; PFEN=1:Enable Pre fetch buffer ; WREN=1:Enable Write operation
#	; LEND=0: Big endian ; TYPE [3:0]=0010:WEX: Disable RDY
	fword 0x642=0x5462
# Set AWR0	
# # # # # #	; W15-12=0010:auto wait=2 ; WR07, 06=01:RD, WR delay=1cycle ; W05, 04=01:WR->WR delay=1cycle (for WEX) ; W03 =1:MCLK->RD/WR delay=0.5cycle ; :for async Memory ; W02 =0:ADR->CS delay=0 ; W01 =0:ADR->RD/WR setup 0cycle ; W00 =RD/WR->ADR hold 0cycle fword 0x660=0x2058
# set mem/hal	; W00 =RD/WR->ADR hold 0cycle

O Emulation memory

If SRAM as the emulation memory is built on target board, SRAM accessed by RD, WR signal, and +BYTE control signal can not be used. (The external bus is initialized to the bus mode for accessing RDX, RDnX after reset.)

2.2 Precautions on Handling Power Supplies

This section provides precautions on power supplies with regard to pin handling and processing when power is turned on.

Processing after Power-on

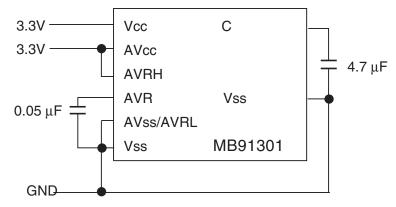
Immediately after power-on, be sure to apply a reset that initializes settings (INIT) from the INIT pin.

To provide for an oscillation stabilization wait time and regulator stabilization wait time immediately after power-on, continue to input the L level to the $\overline{\text{INIT}}$ pin as long as the oscillation stabilization wait time required by the oscillating circuit. (Initialization by INIT from the $\overline{\text{INIT}}$ pin sets the oscillation stabilization wait time to the minimum value.)

External clock Input after Power-on

After power-on, be sure to input an external clock until the oscillation stabilization wait is canceled.

Indeterminate Output When the Power Is Turned On


When the power is turned on, the output pin may remain unstable until the internal power supply becomes stable.

Notes on Using the Internal DC-DC Regulator and A/D Converter

The MB91301 series contains a regulator. Be sure to supply power to the V_{CC} pin at 3.3 V and add a bypass capacitor of about 4.7 μ F for the regulator to the C pin.

The regulator contains an A/D converter and supplies power to AV_{CC} at 3.3 V. Be sure to insert a capacitor of at least 0.05 μ F between the AVR and AV_{SS}/AVRL pins.

Figure 2.2-1 Notes on Using the Internal DC-DC Regulator and A/D Converter

CHAPTER 3 CPU AND CONTROL UNITS

This chapter provides basic information required to understand the functions of the MB91301 series. It covers architecture, specifications, and instructions.

- 3.1 "Memory Space"
- 3.2 "Internal Architecture"
- 3.3 "Instruction Cache"
- 3.4 "Dedicated Registers"
- 3.5 "General-Purpose Registers"
- 3.6 "Data Structure"
- 3.7 "Word Alignment"
- 3.8 "Memory Map"
- 3.9 "Branch Instructions"
- 3.10 "EIT (Exception, Interrupt, and Trap)"
- 3.11 "Reset (Device Initialization)"
- 3.12 "Clock Generation Control"
- 3.13 "Device State Control"
- 3.14 "Operating Modes"

3.1 Memory Space

The MB91301 series has a logical address space of 4 GB (2³² addresses), which the CPU accesses linearly.

Memory Map

Figure 3.1-1 "Memory Map" shows the memory space of the MB91301 series.

CHAPTER 3 CPU AND CONTROL UNITS

	(MB91302A) (Single chip mode)	Ir	MB91302A Iternal ROM External bus mode	Л E	391301/302 External ROI External bus mode	M I s Ext	(MB91V30 ⁻ nternal ROI ernal bus m ODR registe ROMA=1)	M Ì node Ext		M node E erat	1B91V301/ External R xternal bus	ЮM
0000 0000H	I/O	Direct addre ssing area	I/O	Direct addre ssing area	I/O	Direct addre ssing area	I/O	Direct addre ssing area	I/O	Direct addre ssing area	I/O	Di ac ss
0000 0400H	1/0	see "∎I/O MAP" I/O	I/O	see "∎I/O MAP" I/O	I/O	see "■I/O MAP" I/O	I/O	see "∎I/O MAP" I/O	I/O	see "∎I/O MAP" I/O	I/O	s "∎ M I
0001 0000н 0002 0000н	I-RAM *1 Access		I-RAM *1 Access		I-RAM *1 Access		I-RAM *1 Access		I-RAM *1 Access		I-RAM *1 Access	
0003 E000н	prohib- ited		prohib- ited		prohib- ited		prohibited Internal		prohibited Internal		prohibited Internal	
0003 F000н	Internal RAM 4 Kbytes		Internal RAM 4 Kbytes		Internal RAM 4 Kbytes		RAM 8 Kbytes		RAM 8 Kbytes		RAM 8 Kbytes	
0004 0000н 0004 2000н			External		4 NJyles		Internal RAM 8 Kbytes		Internal RAM 8 Kbytes			
0006 0000н	Access		area				Access prohibit- ed		Access prohibit- ed			
000E 0000H	ited		Access		External area				External area		External area	
000F E000H			prohib- ited				External area		Internal RAM			
000F F000н	Internal ROM 4Kbytes* ²		Internal ROM 4Kbytes* ²						8 Kbytes emula- tion			
0010 0000H	Access prohib- ited		External area		External area		External area		External area		External area	

Figure 3.1-1 Memory Map

 *1 : On specific area between 10000_H and 2000_H, 4 Kbyte RAM can be used. Refer to "■INSTRUCTION CACHE".

*2 : The real time OS internal model stores the real time OS kernel. The program loader internal model stores the program loader.

*3 : Non-ROM model supports the external ROM external bus mode only.

Note : Internal ROM emulation : only MB91V301A

Note:

Each mode is set depending on the mode vector fetch after INIT is negated. (For mode setting, see "■MODE SETTINGS".)

O Direct addressing area

The areas in the address space listed below are used for input-output.

These areas called the direct addressing area. The address of an operand can be directly specified in an instruction.

The size of the direct addressing area varies according to the size of data to be accessed:

- Byte data access: 0 to 0FF_H
- Halfword data access: 0 to 1FF_H
- Word data access: 0 to 3FF_H

3.2 Internal Architecture

The MB91301 series is a high-performance core based on RISC architecture and advanced instructions for embedded applications.

Features

O RISC architecture used

Basic instruction: One instruction per cycle

O 32-bit architecture

General-purpose register: 32 bits x 16

○ 4 GB linear memory space

O Multiplier installed

- 32-bit by 32-bit multiplication: 5 cycles
- 16-bit by 16-bit multiplication: 3 cycles

O Enhanced interrupt processing function

- Quick response speed: 6 cycles
- Support of multiple interrupts
- Level mask function: 16 levels

O Enhanced instructions for I/O operations

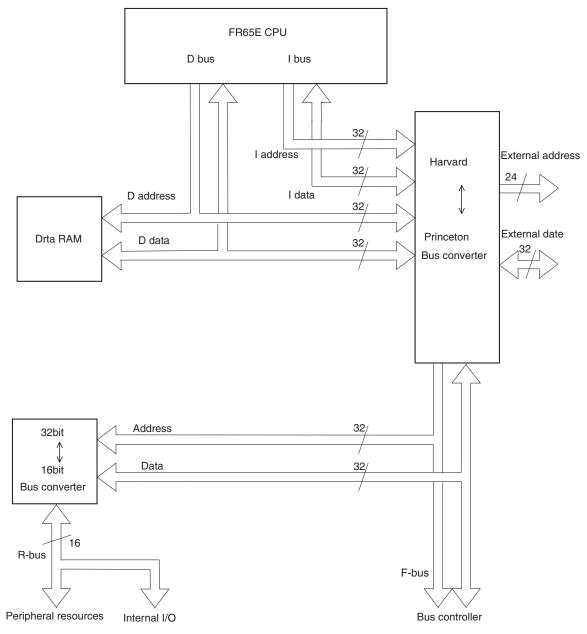
- Memory-to-memory transfer instruction
- Bit-processing instructions

O Efficient code

Basic instruction word length: 16 bits

 \bigcirc Low-power consumption

Sleep and stop modes


O Gear function

Internal Architecture

The MB91301 series CPU uses the Harvard architecture, which has separate buses for instructions and data. An on-chip instruction cache is connected to the instruction bus (I-bus). A 32-bit/16-bit bus converter is connected to the bus (F-bus), providing an interface between the CPU and peripheral resources. A Harvard/Princeton bus converter is connected to both the I-bus and D-bus, providing an interface between the CUP and bus controllers.

Figure 3.2-1 "Internal Architecture" shows connections in the internal architecture.

Figure 3.2-1 Internal Architecture

O CPU

The CPU is a compact implementation of the 32-bit RISC MB91301 series architecture.

Five instruction pipe lines are used to execute one instruction per cycle. A pipeline consists of the following stages:

- Instruction fetch (IF): Outputs an instruction address to fetch an instruction.
- Instruction decode (ID): Decodes a fetched instruction. Also reads a register.
- Execution (EX): Executes an arithmetic operation.
- Memory access (MA): Performs a load or store access to memory.
- Write-back (WB): Writes an operation result (or loaded memory data) to a register

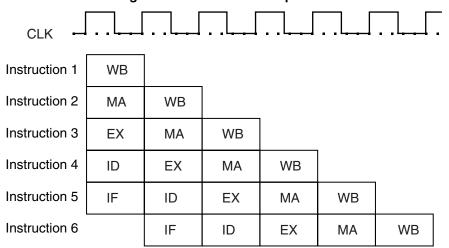


Figure 3.2-2 Instruction Pipelines

Instructions are never executed randomly. If Instruction A enters a pipeline before Instruction B, it always reaches the write-back stage before Instruction B.

In general, one instruction is executed per cycle. However, multiple cycles are required to execute a load/store instruction with a memory wait, a branch instruction without a delay slot, or a multiple-cycle instruction. The execution of instructions slows down if the instructions are not supplied fast enough.

O Instruction cache

The existence of an on-chip instruction cache enables the construction of a high-performance system without added costs for high-speed external memory and the related control logic. The instruction cache can supply instructions to the CPU even when the external bus is slow. For details of instruction cache, see Section 3.3 "Instruction Cache".

O 32-bit/16-bit bus converter

The 32-bit/16-bit bus converter provides an interface between the F-bus accessed with 32-bit width and the R-bus accessed with 16-bit width and enables data access from the CPU to built-in peripheral circuits.

If the CPU performs one 32-bit access to the R-bus, the 32-bit/16-bit bus converter translates the access into two 16-bit accesses. Some of the built-in peripheral circuits have limitations on the access width.

O Harvard/Princeton bus converter

The Harvard/Princeton bus converter coordinates instruction and data accesses of the CPU to provide a smooth interface between it and external buses.

The CPU has a Harvard architecture with separate buses for instructions and data. On the other hand, the bus controller that performs control of external buses has a Princeton architecture with a single bus. The Harvard/Princeton bus converter assigns priorities to instruction and data accesses from the CPU to control accesses to the bus controller. This function allows the order of external bus accesses to be permanently optimized.

Overview of Instructions

The MB91301 series supports the general RISC instructions as well as logical operation, bit manipulation, and direct addressing instructions optimized for embedded applications. Each instruction is 16 bits long (some instructions 32 and 48 bits long), resulting in superior efficiency of memory use. For a list of instruction sets, see the appendix E.

An instruction set is classified into the following function groups:

- Arithmetic operation
- Load and store
- Branch
- Logical operation and bit manipulation
- Direct addressing
- Other

• Arithmetic operation

Arithmetic operation instructions include standard arithmetic operation instructions (addition, subtraction, and comparison) and shift instructions (logical shift and arithmetic shift). The addition and subtraction instructions include an operation with carries for use with multiple-word-length operations and an operation that does not change flag values, a convenience in address calculations.

Furthermore, 32-bit-by-32-bit and 16-bit-by-16-bit multiplication instructions and a 32-bit-by-32-bit step division instruction are provided.

Additionally, an immediate data transfer instruction that sets immediate data in a register and a register-to-register transfer instruction are provided.

An arithmetic operation instruction is executed using the general-purpose registers and the multiplication and division registers in the CPU.

O Load and store

Load and store instructions read and write to external memory. They are also used to read and write to a peripheral circuit (I/O) on the chip.

Load and store instructions have three access lengths: byte, halfword, and word. In addition to indirect memory addressing via general registers, indirect memory addressing via registers with displacements and via registers with register incrementing or decrementing are provided for some instructions.

O Branch

The branch group includes branch, call, interrupt, and return instructions. Some branch instructions have delay slots while others do not. These may be optimized according to the application. For more information about the branch instructions, see Section 3.9 "Branch Instructions".

O Logical operation and bit manipulation

Logical operation instructions perform the AND, OR, and EOR logical operations between general-purpose registers or a general-purpose register and memory (and I/O). Bit manipulation instructions directly manipulate the contents of memory (and I/O). They access memory using general register indirect addressing.

O Direct addressing

Direct addressing instructions are used for access between an I/O and a general-purpose register or between an I/O and the memory. High-speed and high-efficiency access can be achieved since an I/O address is directly specified in an instruction instead of using register indirect addressing. Indirect memory addressing via registers with register incrementing or decrementing are provided for some instructions.

O Other types of instructions

Other types of instructions include instructions that provide flag setting, stack manipulation, sign/ zero extension, and other functions in the PS register. Also, function entry and exit instructions that support high-level languages and register multi-load/store instructions are provided.

3.3 Instruction Cache

This section describes the instruction cache in detail.

Overview

The instruction cache is temporary storage memory. When low-speed external memory accesses an instruction code, the instruction cache internally stores the code already accessed once time to increase the access speed for subsequent uses.

The instruction cache data RAM enables software-based direct read access and write access when RAM mode is set. To turn the instruction cache on and then off, be sure to use the subroutine described in the precautions in Section 3.3.4 "Setting Up the Instruction Cache Before Use".

3.3.1 Configuration of the Instruction Cache

This section describes the configuration of the instruction cache.

Overview of Specifications

The following is an overview of the instruction cache specifications:

- FR basic instruction length: 2 bytes
- Block layout method: 2-way set associative
- Block: One way consists of 128 blocks.

One block consists of 16 bytes (= 4 sub blocks).

One sub block consists of 4 bytes (= 1 bus access unit)

Configuration of Instruction Cache

Figure 3.3-1 "Configuration of Instruction Cache" shows the configuration of the instruction cache.

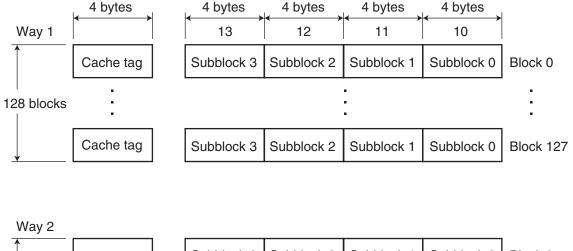
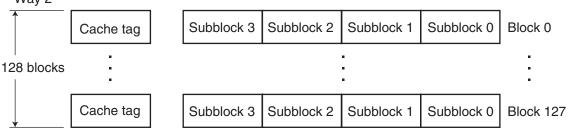



Figure 3.3-1 Configuration of Instruction Cache

Instruction Cache Tags

Figure 3.3-2 "Configuration of Instruction Cache Tags" shows the configuration of the instruction cache tags.

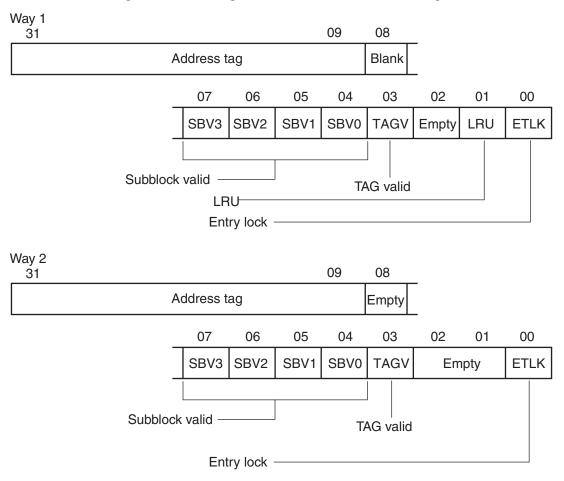


Figure 3.3-2 Configuration of Instruction Cache Tags

The following describes the functions of the instruction cache tag bits.

[Bits 31 to 9] Address tag

In the address tag, the high-order 23 bits of the memory address of an instruction cached in a corresponding block are stored. The instruction data stored in Sub block k of Block i has Memory Address IA, which is calculated as

IA = address-tag x 2^9 + i x 2^4 + k x 2^2

The address tag is used to check the matching of an instruction address requested for the access by the CPU. Based on the result of the tag check, one of the following operations occurs:

• If the requested instruction data exists in the cache (hit)

The data is transferred from the cache to the CPU within the cycle.

If the requested instruction data does not exist in the cache (miss)

The data acquired via external access is acquired by the CPU and the cache simultaneously.

[Bits 7 to 4] Sub block valid

If SBV*=1, the instruction data at the address indicated by the tag has been entered in the corresponding sub block. Normally, two instructions can be stored in a sub block (except for a immediate data transfer instruction).

[Bit 3] TAG valid bit

Indicates whether the address tag value is valid. If this bit is 0, the block becomes invalid regardless of the sub block valid bit (when flushed).

[Bit 1] LRU (only for Way 1)

Exists only in the instruction cache tag of Way 1. Indicates whether, in a selected set, the entry last accessed was Way 1 or Way 2. Indicates that the last accessed entry of the set belongs to Way 1 if LRU=1 or Way 2 if LRU=0.

[Bit 0] Entry lock

Locks into the cache all the entries in the block corresponding to the tag. The entries are locked if ETLK=1 (there is no updating) if a cache miss occurs. However, invalid sub blocks are updated. If, for both Ways 1 and 2, a cache miss occurs while the entries are locked, one cycle required for the cache miss decision is lost and then external memory is accessed.

Note:

Do neither control register of the instruction cache nor the data access to RAM of the instruction cache immediately before the instruction of RETI.

3.3.2 Configuration of the Control Registers

Control registers include the cache size register (ISIZE) and the instruction cache register (ICHCR).

This section describes the functions of these registers.

■ Configuration of Cache Size Register (ISIZE)

Figure 3.3-3 "Configuration of the Control Register (ISIZE) bits" shows the configuration of the cache size register (ISIZE) bits.

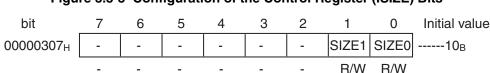


Figure 3.3-3 Configuration of the Control Register (ISIZE) Bits

The following describes the functions of the cache size register (ISIZE) bits.

[Bits 1, 0] SIZE1, SIZE0

These bits set the capacity of the instruction cache. Depending on the setting, the cache size, IRAM capacity, and address map used in RAM mode vary as shown in Figure 3.3-4 "Address Map of RAM". If you have changed the cache capacity, be sure to flush the cache and unlock the entries before turning on the cache.

Table 3.3-1 Cache Size Registers

SIZE1	SIZE0	Capacity
0	0	1KB
0	1	2КВ
1	0	2KB (Initial value)
1	1	Setting prohibited

CHAPTER 3 CPU AND CONTROL UNITS

Address	Cache off RAM off	Cache off RAM on	Cache 4I RAM of		Cache 2K RAM off	Cache 2K RAM on	Cache 1K RAM off	Cache RAM on
00010000 _H 00010200 _H 00010400 _H 00010600 _H 00010800 _H		TAG1 <tag1></tag1>		TAG1 <tag1></tag1>		TAG1 <tag1></tag1>		TAG1 <tag1> <tag1> <tag1> <tag1></tag1></tag1></tag1></tag1>
00010FFF _H 00014000 _H 00014200 _H 00014400 _H		TAG2		TAG2		<tag1> TAG2 <tag2></tag2></tag1>		<tag1> TAG2 <tag2> <tag2></tag2></tag2></tag1>
00014600 _н 00014800 _н 00014FFF _H		<tag2></tag2>		<tag2></tag2>		<tag2> <tag2></tag2></tag2>		<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table< td=""></table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<table<>
00018000 _H 00018200 _H 00018400 _H 00018600 _H	IRAM1	\$RAM1		\$RAM1	IRAM1	\$RAM1 IRAM1	IRAM1	\$RAM1 IRAM1
00018 800 _н 00018 FFF _н	<iram1></iram1>	<\$RAM1>		<\$RAM1	<iram1< td=""><td>> <\$RAM1></td><td><iram1></iram1></td><td><\$RAM1></td></iram1<>	> <\$RAM1>	<iram1></iram1>	<\$RAM1>
0001С000 _H 0001С200 _H 0001С400 _H 0001С600 _H	IRAM2	\$RAM2		\$RAM2	IRAM2	\$RAM2 IRAM2	IRAM2	\$RAM2 IRAM2
0001C800 _н 0001CFFF _н	<iram2></iram2>	<\$RAM2>		<\$RAM2			<iram2></iram2>	<\$RAM2>
	TAG1TAG TAG2TAG < >Mirror RAM on/off	RAM(way2)				AM1I-Bus RAI AM1I-Bus RAI		
$\begin{array}{c} \text{TAG} \ \text{RAM} \\ 00010000_{\text{H}} \\ 00010008_{\text{H}} \\ 00010000C_{\text{H}} \\ 00010010_{\text{H}} \\ 00010010_{\text{H}} \\ 00010014_{\text{H}} \\ \end{array}$		<- Entry at 00x <- Mirror of 00 <- Entry at 01» <- Mirror of 01	x address	Cache RAM 000180004 00018004 000180084 0001800CH 000180104 00018014 		Instruction at 0 Instruction at 0 Instruction at 0 Instruction at 0 Instruction at 0 Instruction at 0	04 address(SE 08 address(SE 0C address(SI 10 address(SE	3V1) 3V2) 3V3) 3V0)

Figure 3.3-4 Address Map of RAM

Figure 3.3-5 Memory Allocation by Cache Size

Cache 4K	Cache 2K	Cache 1K	Cache off
	\$RAM1	\$RAM1	
\$RAM1			IRAM1
	IRAM1		
	\$BAM2	\$RAM2	
¢DAMO	φ11/ (IVIZ		IRAM2
ͽϮΑΙνίΖ	IRAM2	IRAM2	
	\$RAM1 \$RAM2	\$RAM1 \$RAM1 \$RAM2	\$RAM1 \$RAM1 \$RAM1 \$RAM1 IRAM1 IRAM1 \$RAM2 \$RAM2

Address	ROMAB=0 (No ROM)	ROMAB=1 (ROM)	
0000000 _н	Direct area	Direct area	
00010000 _H	IRAM	IRAM	
00020000 _н 00030000 _н			(Even in a D-bus RAM area cache areas are cached through the IA bus.)
00040000 _н		Internal ROM	
00100000 _Н	Cache area	Cache area	Each chip-select area can be set as a non-cacheable area.
FFFFFFF			

Figure 3.3-6 Cache area

■ Instruction Cache Control Register (ICHCR)

The instruction cache control register (ICHCR: I-CacHe Control Register) controls instruction cache operation.

Writing to the ICHCR does not affect the cache operation of an instruction fetched during the subsequent three cycles.

Figure 3.3-7 "Configuration of Instruction Cache Control Register (ICHCR) bits" shows the configuration of the instruction cache control register.

Figure 3.3-7 Configuration of Instruction Cache Control Register (ICHCR) bits

bit	7	6	5	4	3	2	1	0	Initial value
000003E7 _H	RAM	-	GBLK	ALFL	EOLK	ELKR	FLSH	ENAB	0-000000 _B
	R/W	-	R/W	R/W	R/W	R/W	R/W	R/W	

The following describes the functions of the instruction cache control register (ICHCR) bits.

[Bit 7] RAM (RAM mode)

If this bit is 1, RAM mode is set.

In RAM mode, set the ENAB bit to 0 to turn off the instruction cache.

[Bit 5] GBLK (Global lock)

This bit locks all the current entries to the instruction cache. If a miss occurs when GBLK=1, a valid entry in the instruction cache is not updated. However, invalid subblocks are updated. The instruction data fetch operation at this time is the same as when the entries are not locked.

[Bit 4] ALFL (Autolock fail)

This bit (ALFL) is set to 1 if locking is attempted on an entry that is already locked. If, during entry autolock, an entry update is attempted on an entry that is already locked, no new entry is locked in the instruction cache regardless of what the user intends. Reference this bit for debugging of a program or similar purpose.

Clear this bit by writing 0 to it.

[Bit 3] EOLK (Entry autolock)

This bit either enables or disables an autolock setting on an entry in the instruction cache. An entry accessed if this bit (EOLK) is 1 (only if a miss occurs) is locked when the hardware sets the entry lock bit in the instruction cache tag to 1. After this point, a locked entry is not subject to update when an instruction cache miss occurs. However, invalid subblocks are updated. To ensure that an entry is locked, flush the cache and set this bit.

[Bit 2] ELKR (Entry lock clear)

This bit specifies clearing of the entry lock bit in all the instruction cache tags. In the cycle following the one in which this bit (ELKR) is set to 1, the entry lock bit in all the cache tags is cleared to 0. However, the content of this bit is held only for one clock cycle and the bit is cleared to 0 in the second and later clock cycles.

[Bit 1] FLSH (Flush)

This bit specifies flushing of the instruction cache. Set this bit (FLSH) to 1 to flush the instruction cache. However, the content of this bit is held only for one clock cycle and the bit is cleared to 0 in the second and later clock cycles.

[Bit 0] ENAB (Enable)

This bit either enables or disables the instruction cache. If this bit (ENAB) is 0, the instruction cache is disabled and an instruction access from the CPU becomes external directly without going through the instruction cache. In the disabled state, the contents of the instruction cache are maintained.

3.3.3 Instruction Cache Statuses and Settings

This section describes the state of the instruction cache in each operating modes and how to set up the instruction cache.

■ Instruction Cache Status in Each Operating Mode

Table 3.3-2 "Status of Instruction Cache in Each Operating Mode" shows the state of the instruction cache in each operating mode.

The disable and flush states are encountered if a bit manipulation or similar instruction has changed only the related bit.

Table 3.3-2 Status of Instruction Cache in Each Operating Mode

		Just after reset	Disable	Flush
Cache m	emory	Contents undefined	Previous state maintained Not rewritable while disabled	Previous state maintained
	Address tag	Contents undefined	Previous state maintained Not rewritable while disabled	Previous state maintained
	Subblock valid bit	Contents undefined	Previous state maintained Not rewritable while disabled	Previous state maintained
Тад	LRU	Contents undefined	Previous state maintained Not rewritable while disabled	Previous state maintained
	Entry lock bit	Contents undefined	Previous state maintained Not rewritable while disabled	Entry lock cleared
	TAG valid bit	Contents undefined	Previous state maintained Flushable while disabled	All entries invalid
RAM		Normal mode	Previous state maintained Flushable while disabled	Previous state maintained
	Global lock	Unlocked	Previous state maintained Rewritable while disabled	Previous state maintained
	Autolock fail	No fail	Previous state maintained Rewritable while disabled	Previous state maintained
Control register	Entry autolock	Unlocked	Previous state maintained Rewritable while disabled	Previous state maintained
	Entry lock clear	No clearing	Previous state maintained Rewritable while disabled	Previous state maintained
	Enable	Disabled	Disabled	Previous state maintained
	Flush	Not flushed	Previous state maintained Rewritable while disabled	Flushed in the cycle following memory access Returned to 0 thereafter

■ Updating Entries in the Instruction Cache

Entries in the instruction cache are updated as shown in Table 3.3-3 "Updating of Entries in the

Instruction Cache".

	Unlock	Lock
Hit	Not updated	Not updated
Miss	Loads the memory and updates the contents of entries in the instruction cache.	Not updated for a tag miss. Updated for subblock invalid.

Table 3.3-3 Updating of Entries in the Instruction Cache

Areas Cacheable by the Instruction Cache

- The instruction cache can cache only the internal F bus space (RAM8KB) and external bus space.
- Even if the contents of external memory are updated for DMA transfer, coherence to cached instructions is not maintained. In this case, maintain cache coherence by flushing the cache.
- Each chip select area can be set as a non cacheable area. Setting a non cacheable area, however, carries a penalty of one more cycle than when with the instruction cache turned off.

3.3.4 Setting Up the Instruction Cache Before Use

This section describes how to set up the instruction cache before it is used.

Setup Procedure

Before using the instruction cache, set it up as follows:

\bigcirc Initialization

Before the instruction cache is used, it must be cleared.

Set the FLSH and ELKR bits of the register to 1 to delete past data.

ldi	#0x000003C7, r0	// I-Cache control register address
ldi	#0B00000110, r1	// FLSH bit (Bit 1) // ELKR bit (Bit 2)
stb	r1, @r0	// Write to the register

This initializes the instruction cache.

• C Enabling the instruction cache (ON)

To enable the instruction cache, set the ENAB bit to 1.

Ldi	#0x000003e7, r0	// I-Cache control register address
Ldi	#0B0000001, r1	// ENAB bit (Bit 0)
Stb	r1, @r0	// Write to the register

Any subsequent instruction access is loaded into the instruction cache.

The instruction cache can be enabled at the same time it is initialized.

Ldi	#0x000003e7, r0	// I-Cache control register address
Ldi	#0B00000111, r1	// ENAB bit (Bit 0) // FLSH bit (Bit 1) // ELKR bit (Bit 2)
stb	r1, @r0	// Write to the register

• Disabling the instruction cache (OFF)

To disable the instruction cache, set the ENAB bit to 0.

Ldi	#0x000003e7, r0	// I-Cache control register address
Ldi	#0B00000000, r1	// ENAB bit (Bit 0)
Stb	r1, @r0	// Write to the register

In this state maintained (which is the same as after reset), the instruction cache virtually does not exist and thus does nothing.

It may be a good idea to turn off the instruction cache if overhead seems to be a problem.

O Locking the complete contents of the cache

Lock the instruction cache so that all the instructions it contains are removed, leaving nothing in it.

Set the GBLK bit of the register to 1. Also set the ENAB bit to 1, since otherwise the instruction cache is turned off and no locked instructions in the instruction cache are used.

Ldi	#0x000003e7, r0	// I-Cache control register address
Ldi	#0B00100001, r1	// ENAB bit (Bit 0) // GBLK bit (Bit 5)
stb	r1, @r0	// Write to the register

O Locking a specific instruction to the instruction cache

To lock a specific group of instructions (subroutines, etc.) to the instruction cache, set the EOLK bit to 1 before executing the instructions. A locked instruction is accessed as if it is in high-speed internal ROM.

Ldi	#0x000003e7, r0	// I-Cache control register address
Ldi	#0B00001001, r1	// ENAB bit (Bit 0) // EOLK bit (Bit 3)
stb	r1, @r0	// Write to the register

Depending on the number of memory waits, this bit becomes valid with the next or a later instruction following the stb instruction.

When locking of the group of instructions is completed, set the EOLK bit to 0.

Ldi	#0x000003e7, r0	// I-Cache control register address
Ldi	#0B0000001, r1	// ENAB bit (Bit 0) // EOLK bit (Bit 3)
stb	r1, @r0	// Write to the register

O Clearing an instruction cache lock

Clear the lock information for an instruction locked with the EOLK bit described above.

Ldi	#0x000003e7, r0	// I-Cache control register address
Ldi	#0B00000000, r1	// Cache disable
Stb	r1, @r0	// Write to the register
Ldi	#0B00000101, r1	// ELKR bit (Bit 2)
Stb	r1, @r0	// Write to the register

Only the lock information is cleared. Locked instructions are replaced sequentially with new instructions depending on the state maintained of the LRU bit.

3.4 Dedicated Registers

Use the dedicated registers for specific purposes. A program counter (PC), program status (PS), table base register (TBC), return pointer (RP), system stack pointer (SSP), user stack pointer (USP), and multiply and divide registers (MDH/MDL) are provided.

List of Dedicated Registers

A register consists of 32 bits.

Figure 3.4-1 "Dedicated Registers" shows the dedicated registers.

Figure 3.4-1 Dedicated Registers

Program counter	PC	
Program status	PS	- ILM - SCR CCR
Table base register	TBR	
Return pointer	RP	
System stack pointer	SSP	
User stack pointer	USP	
Multiply and divide registers	MDH MDL	

Program Counter (PC)

This section describes the functions of the program counter (PC: Program Counter).

The program counter (PC) consists of 32 bits as shown below:

	31	0	[Initial value]
PC			XXXXXXXXH

The program counter indicates the address of the instruction being executed.

If the PC is updated when an instruction is executed, Bit 0 is set to 0. Bit 0 can be set to 1 only if an odd-number address is specified as the branch address.

If Bit 0 is set to 1, however, Bit 0 is invalid and an instruction must be placed at the address that is a multiple of 2.

The initial value upon reset is undefined.

Table Base Register (TBR)

This section describes the functions of the table base register (TBR: Table Base Register).

The table base register (TBR) consists of 32 bits as shown below:

 31
 0 [Initial value]

 TBR
 000FFC00_H

The table base register holds the first address of the vector table to be used during EIT processing.

The initial value upon reset is 000FFC00_H.

Return Pointer (RP)

This section describes the functions of the return pointer (RP: Return Pointer).

The return pointer (RP) consists of 32 bits as shown below:

	31	0	[Initial value]
RP			XXXXXXXXH

The return pointer holds the return address from a subroutine.

When the CALL instruction is executed, the value of the PC is transferred to the RP.

When the RET instruction is executed, the contents of the RP are transferred to the PC.

The initial value upon reset is undefined.

System Stack Pointer (SSP)

This section describes the functions of the system stack pointer (SSP: System Stack Pointer). The system stack pointer (SSP) consists of 32 bits as shown below:

The SSP is the system stack pointer.

This register is used as an R15 general-purpose register if the S flag of the condition code register (CCR) is 0.

The SSP can also be specified explicitly.

This register is also used as a stack pointer that specifies a stack on which the contents of the PS and PC are to be saved if an EIT occurs.

The initial value upon reset is 0000000_{H} .

User Stack Pointer (USP)

This section describes the functions of the user stack pointer (USP: User Stack Pointer).

The user stack pointer (USP) consists of 32 bits as shown below:

	31 0	[Initial value]
USP		XXXXXXXXAH

The USP is the user stack pointer.

This register is used as an R15 general-purpose register if the S flag of the condition code register (CCR) is 1.

The USP can also be specified explicitly.

The initial value upon reset is undefined.

This register cannot be used by the RETI instruction.

■ Multiply and Divide Registers (MDH/MDL)

This section describes the functions of the multiply and divide registers (MDH/MDL: Multiply & Divide register).

The multiply and divide registers (MDH/MDL) consist of 32 bits as shown below:

MDH and MDL are the multiply and divide registers. Each register is 32 bits long.

The initial value upon reset is undefined.

O Functions when multiplication is executed

For a 32-bit-by-32-bit multiplication, the 64-bit-long operation result is stored in the multiply and divide registers as follows:

- MDH: High-order 32 bits
- MDL: Low-order 32 bits

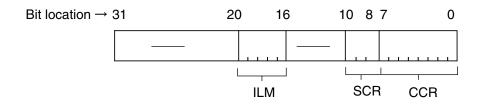
For a 16-bit-by-16-bit multiplication, the result is stored in one of the multiply and divide registers as follows:

- MDH: Undefined
- MDL: 32-bit result

$\rm O\,$ Functions when division is executed

When a calculation is started, the dividend is stored in MDL.

When any of the DIV0S/DIV0U, DIV1, DIV2, DIV3, and DIV4S instructions is executed to perform division, the result is stored in MDH and MDL as follows:


- MDH: Remainder
- MDL: Quotient

3.4.1 Program Status (PS) Register

The program status register (PS: Program Status) holds the program status. The PS register consists of three parts: ILM, SCR, and CCR. All undefined bits are reserved. During reading, 0 is always read. Writing is disabled.

Program Status (PS) Register

The program status (PS) register consists of the condition code register (CCR), system condition code register (SCR), and interrupt level mask (ILM) register.

○ Condition code register (CCR)

The condition code register (CCR: Condition Code Register) has the following configuration:

bit	7	6	5	4	3	2	1	0	[Initial value]
	-	-	S	Ι	Ν	Z	V	С	00XXXX _B

The following describes the functions of these bits.

[Bit 5] S (Stack flag)

This bit specifies the stack pointer to be used as general-purpose register R15.

The settings of this bit are shown in the following table.

Value	Description
0	The system stack pointer (SSP) is used as general-purpose register R15. When an EIT occurs, this bit is automatically set to 0. Note that a value saved on the stack is the value before it is cleared.
1	The user stack pointer (USP) is used as general-purpose register R15.

This bit is cleared to 0 by a reset.

Set this bit to 0 when the RETI instruction is executed.

[Bit 4] I (Interrupt enable flag)

This bit enables or disables a user interrupt request.

The settings of this bit are shown in the following table.

Value	Description			
0	User interrupts disabled. When the INT instruction is executed, this bit is cleared to 0. Note that a value saved on the stack is the value before it is cleared.			
1	User interrupts enabled. The mask processing of a user interrupt request is controlled by the value held by the ILM register.			

This bit is cleared to 0 by a reset.

[Bit 3] N (Negative flag)

This bit indicates the sign used when the operation result is handled as an integer expressed as the two's complement.

The settings of this bit are shown in the following table.

Value	Description
0	Indicates that the operation result is a positive value.
1	Indicates that the operation result is a negative value.

The initial state of this bit upon reset is undefined.

[Bit 2] Z (Zero flag)

This bit indicates whether the operation result is 0.

The settings of this bit are shown in the following table.

Value	Description
0 Indicates that the operation result is not 0.	
1	Indicates that the operation result is 0.

The initial state of this bit upon reset is undefined.

[Bit 1] V (Overflow flag)

This bit indicates whether an overflow has occurred as a result of the operation when the operand used in the operation is handled as an integer expressed as the two's complement.

The settings of this bit are shown in the following table.

Value	Description
0	Indicates that no overflow has occurred as a result of the operation.
1	Indicates that an overflow has occurred as a result of the operation.

The initial state of this bit upon reset is undefined.

[Bit 0] C (Carry flag)

This bit indicates whether a carry or a borrow has occurred from the highest bit in the operation.


The settings of this bit are shown in the following table.

Value	Description
0	Indicates that no carry and borrow have occurred.
1	Indicates that a carry or borrow has occurred.

The initial state of this bit upon reset is undefined.

• System condition code register (SCR)

The system condition code register (SCR: System Condition code Register) has the following configuration:

The following describes the functions of the system condition code register (SCR) bits.

[Bits 10, 9] D1, D0 (Step division flag)

These bits hold the intermediate data obtained when step division is executed.

Do not change these bits while division processing is being executed.

To perform other processing while executing a step division, save and restore the value of the PS register to ensure that the step division is restarted.

The initial state of this bit upon reset is undefined.

To set these bits, execute the DIV0S instruction with the dividend and the divisor to be referenced.

To forcibly clear these bits, execute the DIVOU instruction.

[Bit 8] T (Step trace trap flag)

This bit specifies whether the step trace trap is to be enabled.

The settings of this bit are shown in the following table.

Value	Description
0	The step trace trap is disabled.
1	The step trace trap is enabled. With this setting, all the user NMI and user interrupts are prohibited.

This bit is initialized to 0 by a reset.

The step trace trap function is used by an emulator. When an emulator is used, this function cannot be used in a user program.

O Interrupt level mask (ILM) register

The interrupt level mask (ILM) register has the following configuration:

20	19	10	17	16	[Initial value]
ILM4	ILM3	ILM2	ILM1	ILM	01111 _B

The interrupt level mask (ILM) register holds an interrupt level mask value. The value held in ILM register is used as a level mask.

The CPU accepts only interrupt requests sent to it with an interrupt level higher than the level indicated by the ILM.

The highest level is 0 (00000_B) and the lowest level is 31 (11111_B) .

Values that can be set by a program have a limit. If the original value is between 16 and 31, the new value must be between 16 and 31. If an instruction that sets a value between 0 and 15 is executed, the specified value plus 16 is transferred.

If the original value is between 0 and 15, an arbitrary value between 0 and 31 may be set.

This register is initialized to 15 (01111_B) by a reset.

Note:

Since some instructions process the PS register first, interrupt processing routines can lead to breaks during debugging or updating of the PS register flag due to the following exceptions.

Whichever the case, the program is designed to reprocess correctly after returning from EIT to ensure that operation before and after EIT conforms to specifications.

- 1 The following operations may occur when (a) user interrupt/NMI is received, (b) step execution is performed, (c) break occurs in a data event or emulator menu in an immediately preceding DIVOU/DIVOS instruction.
 - (1) D0 and D1 flag precede and are renewed.
 - (2) EIT processing routine (user interruption, NMI or emulator) is executed.
 - (3) After returning from EIT, DIVOU/DIVOS instructions are executed and the D0 and D1 flags are updated to the same value as (1).
- 2 When each ORCCR/STILM/MOV Ri and PS instruction is executed to permit interrupting with the user interruption and the NMI factor generated, the following operations are done.
 - (1) The PS register precedes and is updated.
 - (2) EIT processing routine (user interruption or NMI) is executed.
 - (3) After returning from EIT, the above instructions are executed and the PS register is updated to the same value as (1).

3.5 General-Purpose Registers

Registers R0 to R15 are general-purpose registers. These registers are used as an accumulator in an operation or a pointer in a memory access.

■ General-purpose Registers

Figure 3.5-1 "Configuration of General-purpose Registers" shows the configuration of the general-purpose registers.

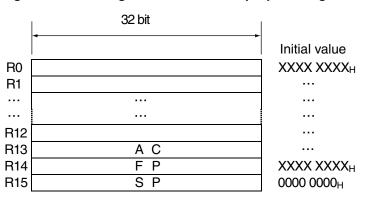


Figure 3.5-1 Configuration of General-purpose Registers

Of these 16 registers, the following are intended for special applications and therefore enhanced instructions are provided for them:

- R13: Virtual accumulator
- R14: Frame pointer
- R15: Stack pointer

The initial value upon reset is undefined for R0 through R14 and is $00000000_{\rm H}$ (SSP value) for R15.

LSB

3.6 Data Structure

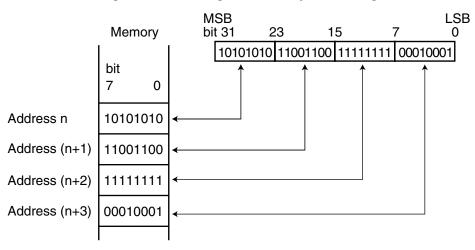
The MB91301 series uses the following two data ordering methods:

- Bit ordering
- Byte ordering

Bit Ordering

The MB91301 series uses the little endian method for bit ordering.

Figure 3.6-1 "Bit Configuration in Bit Ordering" shows the bit configuration in bit ordering.


Figure 3.6-1 Bit Configuration in Bit Ordering bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB

Byte Ordering

The MB91301 series uses the big endian method for byte ordering.

Figure 3.6-2 "Configuration of Byte Ordering" shows the configuration of byte ordering.

Figure 3.6-2 Configuration of Byte Ordering

3.7 Word Alignment

Since instructions and data are accessed in byte units, the addresses at which they are placed depend on the instruction length or the data width.

Program Access

A program for the MB91301 series must be placed at an address that is a multiple of 2.

Bit 0 of the program counter (PC) is set to 0 if the PC is updated when an instruction is executed.

Bit 0 can be set to 1 only if an odd-number address is specified as the branch address.

If Bit 0 is set to 1, however, Bit 0 is invalid and an instruction must be placed at the address that is a multiple of 2.

No odd-number address exception exists.

Data Access

If data in the MB91301 series is accessed, forced alignment is applied to the address based on the width.

- Word access: An address must be a multiple of 4. (The lowest-order 2 bits are forcibly set to 00.)
- Halfword access: An address must be a multiple of 2. (The lowest-order bit is forcibly set to 0.)
- · Byte access: -

During word or halfword data access, some of the bits in the result of calculating an effective address are forcibly set to 0. For example, in @(R13, Ri) addressing mode, the register before addition is used without change in the calculation (even if the lowest-order bit is 1) and the low-order bits are masked. A register before calculation is not masked.

[Example] LD @(R13, R2), R0

	R13	00002222 _H
	R2	0000003 _H
+)		
	Addition result	00002225 _H ↓ Lower 2 bits forcibly masked
	Address pin	00002224 _H

3.8 Memory Map

This section shows the memory map for the MB91301 series.

Memory Map

The address space of memory is 32 bits linear.

Figure 3.8-1 "Memory Map" shows the memory map.

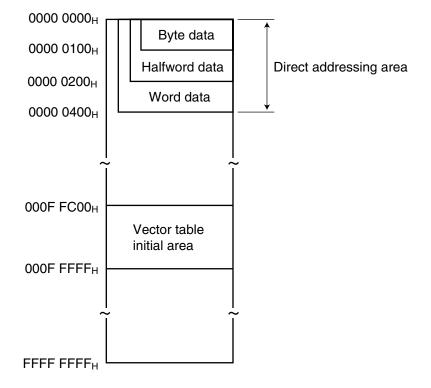


Figure 3.8-1 Memory Map

O Direct addressing area

The following areas in the address space are the areas for I/O. When direct addressing is used in these areas, an operand address can be directly specified in an instruction.

The size of an address area for which an address can be directly specified varies is determined by the data length as follows:

- Byte data (8 bits): 0 to 0FF_H
- Halfword data (16 bits): 0 to 1FF_H
- Word data (32 bits): 0 to 3FF_H

O Vector table initial area

The area from $000FFC00_{H}$ to $000FFFFF_{H}$ is the initial EIT vector table area.

You can place the vector table that will be used during EIT processing at any address by rewriting the TBR. Initialization by a reset places the table at this address.

3.9 Branch Instructions

An operation with or without a delay slot can be specified for a branch instruction used in the MB91301 series.

Branch Instructions with Delay Slot

Instructions written as follows perform a branch operation with a delay slot:

JMP:D	@Ri	CALL:D	label12	CALL:D	@Ri	RET:D	
BRA:D	label9	BNO:D	label9	BEQ:D	label9	BNE:D	label9
BC:D	label9	BNC:D	label9	BN:D	label9	BP:D	label9
BV:D	label9	BNV:D	label9	BLT:D	label9	BGE:D	label9
BLE:D	label9	BGT:D	label9	BLS:D	label9	BHI:D	label9

Branch Instructions without Delay Slot

Instructions written as follows perform a branch operation without a delay slot:

JMP	@Ri	CALL	label12	CALL	@Ri	RET	
BRA	label9	BNO	label9	BEQ	label9	BNE	label9
BC	label9	BNC	label9	BN	label9	BP	label9
BV	label9	BNV	label9	BLT	label9	BGE	label9
BLE	label9	BGT	label9	BLS	label9	BHI	label9

3.9.1 Operation of Branch Instructions with Delay Slot

In operation with a delay slot, the instruction located just after a branch instruction (placed in a "delay slot") is executed before the instruction that branches is executed.

Operation of Branch Instruction with Delay Slot

Since an instruction in the delay slot is executed before the branch operation, the apparent execution speed is one cycle. However, a NOP instruction must be placed in the delay slot if there is no valid instruction put there.

[Example]

;	List of instr	ructions			
	ADD	R1,	R2	;	
	BRA:D	LABEL		;	Branch instruction
	MOV	R2,	R3	;	Delay slot Executed before branch
LABEL :	ST	R3,	@R4	;	Branch destination

If a conditional branch instruction is used, an instruction placed in the delay slot is executed whether or not the condition for branching is met.

If a delay branch instruction is used, the order of execution for some instructions seems to be reversed. However, this occurs only for updating the PC and the instructions are executed in the specified order for other operations (register update and reference, etc.)

The following is a concrete example.

○ JMP:D @Ri / CALL:D @Ri instruction

Ri referenced by the JMP:D @Ri / CALL:D @Ri instruction is not affected even though Ri is updated by the instruction in the delay slot.

[Example]

LDI:32	#Label,	R0	;	
JMP:D	@R0		;	Branch to Label
LDI:8	#0,		;	No effect on the branch destination address

•••

O RET:D instruction

RP referenced by the RET:D instruction is not affected even though RP is updated by the instruction in the delay slot.

[Example]

RET:D			;	Branch to address defined beforehand in RP
MOV	R8,	RP	;	No effect on the return operation

O Bcc:D rel instruction

The flag referenced by the Bcc:D rel instruction is not affected by the instruction in the delay slot.

[Example]

ADD	#1,	R0	;	Flag change
BC:D	Overflow		;	Branch to execution result of above instruction
ANDCCR	#0		;	This flag update is not referenced by the above branch instruction.

○ CALL:D instruction

If RP is referenced by an instruction in the delay slot of the CALL:D instruction, the data that has been updated by the CALL:D instruction is read.

[Example]

CALL:D	Label		;	Updating RP and branching
MOV	RP,	R0	;	Transferring RP, execution result of above CALL:D

■ Limitations on Branch Instruction with Delay Slot

...

O Instructions that can be placed in the delay slot

Only an instruction meeting the following conditions can be executed in the delay slot.

- One-cycle instruction
- Instruction other than a branch instruction
- · Instruction whose operation is not affected even though the order is changed

A one-cycle instruction is an instruction denoted in the Number of Cycles column in the list of instructions as 1, a, b, c, and d.

O Step trace trap

A step trace trap does not occur between the execution of a branch instruction with a delay slot and the delay slot.

O Interrupt/NMI

An interrupt/NMI is not accepted between the execution of a branch instruction with a delay slot and the delay slot.

O Undefined instruction exception

An undefined instruction exception does not occur if there is an undefined instruction in the delay slot. If an undefined instruction is in the delay slot, it operates as a NOP instruction.

3.9.2 Operation of Branch Instruction without Delay Slot

In operation without a delay slot, instructions are executed in the order in which they are specified. An instruction immediately following a branch is never executed before it.

Operation of Branch Instruction without Delay Slot

[Example] ; List of instructions ADD R1, R2 ; BRA LABEL ; Branch instruction (without a delay slot)

MOV R2, R3 ; Not executed ... LABEL : ST R3, @R4 ; Branch destination

A branch instruction without a delay slot is executed in two cycles if a branch occurs and in one cycle if no branch occurs.

Since no appropriate instruction can be placed in the delay slot, this instruction results in a more efficient instruction code than a branch instruction with a delay slot and with NOP specified.

For both optimal execution speed and code efficiency, select an operation with a delay slot if a valid instruction can be placed in the delay slot; otherwise, select an operation without a delay slot.

3.10 EIT (Exception, Interrupt, and Trap)

EIT, a generic term for exception, interrupt, and trap, refers to suspending program execution if an event occurs during execution and then executing another program.

■ EIT (Exception, Interrupt, and Trap)

An exception is an event that occurs related to the execution context. Execution restarts from the instruction that caused the exception.

An interrupt is an event that occurs independently of execution context. The event is caused by hardware.

A trap is an event that occurs related to the execution context. Some traps, such as system calls, are specified in a program. Execution restarts from the instruction following the one that caused the trap.

Features

- Multiple interrupt is supported to the interruption.
- It is a level mask function (15 levels are available the user) to the interruption.
- Trap instruction (INT)
- EIT (hardware/software) for emulator startup

EIT Causes

The following are causes of EIT:

- Reset
- User interrupt (internal resource, external interrupt)
- NMI
- · Delayed interrupt
- Undefined instruction exception
- Trap instruction (INT)
- Trap instruction (INTE)
- Step trace trap
- No-coprocessor trap
- Coprocessor error trap

Return from EIT

Use the RETI instruction to return from EIT.

3.10.1 EIT Interrupt Levels

The interrupt levels are 0 to 31 and are managed with five bits.

■ EIT Interrupt Levels

Table 3.10-1 "EIT Interrupt Levels" shows the allocation of the levels.

Level			
Binary	Decimal		
00000 00011	0 3	(Reserved for system) (Reserved for system)	If the original ILM value is between 16 and 31, a program cannot set a value in this ILM range.
00100	4	INTE instruction Step trace trap	
00101 	5	(Reserved for system)	
 01110	 14	 (Reserved for system)	
01111	15	NMI (for user)	
10000 10001 	16 17 	Interrupt Interrupt 	User interrupts prohibited if ILM is set
 11110 11111	 30 31	 Interrupt -	Interrupts prohibited if ICR is set

Operation is possible for levels 16 to 31.

The interrupt level does not affect an undefined instruction exception, no-coprocessor trap, coprocessor error trap, or an INT instruction. It does not change the ILM, either.

I Flag

A flag that specifies whether an interrupt is permitted or prohibited. This flag is provided as Bit 4 of the PS register.

Value	Description
0	Interrupts prohibited Cleared to 0 if the INT instruction is executed. Note that a value saved on the stack is the value before it is cleared.
1	Interrupts permitted The mask processing of an interrupt request is controlled by the value in the ILM register.

Interrupt Level Mask (ILM) Register

A PS register (Bits 20 to 16) that holds an interrupt level mask value.

The CPU accepts only an interrupt request sent to it with an interrupt level higher than the level indicated by the ILM.

The highest level is 0 (00000_B) and the lowest level is 31 (11111_B) .

Values that can be set by a program have a limit. If the original value is between 16 and 31, the new value must be between 16 and 31. If an instruction that sets a value between 0 and 15 is executed, the specified value plus 16 is transferred.

If the original value is between 0 and 15, any value between 0 and 31 may be set.

Note:

Use the STILM instruction to set this register.

Level Mask for Interrupt and NMI

If an NMI or interrupt request occurs, the interrupt level (Table 3.10-1 "EIT Interrupt Levels") of the interrupt source is compared with the level mask value held in the ILM. A request meeting the following condition is masked and is not accepted:

Interrupt level of cause >= Level mask value

3.10.2 Interrupt Control Register (ICR)

The interrupt control register (ICR: Interrupt Control Register), located in the interrupt controller, sets the level of an interrupt request. An ICR is provided for each of the interrupt request inputs. The ICR is mapped on the I/O space and is accessed from the CPU through a bus.

Configuration of Interrupt Control Register (ICR)

The following shows the configuration of the interrupt control register (ICR) bits.

bit	7	6	5	4	3	2	1	0	Initial value
	-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	Initial value11111 $_{\rm B}$
				R	R/W	R/W	R/W	R/W	

The following describes the functions of the interrupt control register (ICR) bits.

[Bit 4] ICR4

This bit is always set to 1.

[Bits 3 to 0] ICR3 to 0

These bits are the low-order 4 bits of the interrupt level of the corresponding interrupt source. They can be read and written to.

Together with Bit 4, a value between 16 and 31 can be set in the ICR.

Mapping of Interrupt Control Register (ICR)

Table 3.10-2 "Interrupt Sources, Interrupt Control Registers, and Interrupt Vectors" shows the relationship between interrupt sources, interrupt control register, and interrupt vectors.

Table 3.10-2 Interrupt Sources, Interrupt Control Registers, and Interrupt Vectors

			Corresponding interrupt vector				
Interrupt source	Interrupt cor	ntrol register	Num	Address			
			Hexadecimal	Decimal	Address		
IRQ00	ICR00	00000440 _H	10 _H	16	TBR + 3BC _H		
IRQ01	ICR01	00000441 _H	11 _H	17	TBR + 3B8 _H		
IRQ02	ICR02	00000442 _H	12 _H	18	TBR + 3B4 _H		
IRQ45	ICR45	0000046D _H	3D _H	61	TBR + 308 _H		
IRQ46	ICR46	0000046E _H	3E _H	62	TBR + 304 _H		
IRQ47	ICR47	0000046F _H	3F _H	63	TBR + 300 _H		

Note: See CHAPTER 11 "INTERRUPT CONTROLLERS".

3.10.3 System Stack Pointer(SSP)

The system stack pointer (SSP) is used to point to the stack to save and restore data when EIT is accepted or a return operation occurs.

System Stack Pointer(SSP)

The system stack pointer (SSP: System Stack Pointer) consists of 32 bits as shown below:

bit 31 • • • 0 [Initial value] SSP 0000000н

Eight is subtracted from the register value during EIT processing and eight is added to the register value during the return operation from EIT that occurs when the RETI instruction is executed.

The system stack pointer (SSP) is initialized to 0000000_{H} by a reset.

The SSP is also used as general-purpose register R15 if the S flag in the CCR is set to 0.

Interrupt Stack

The value in the PC or PS is saved to or restored from an area pointed to by the system stack pointer (SSP). After an interrupt occurs, the PC is stored at the address indicated by the SSP and the PS is stored at the address indicated by the SSP plus 4. This situation is shown in Figure 3.10-1 "Interrupt Stack".

Figure 3.10-1 Interrupt Stack

[Example] [Before interrupt] [After interrupt] SSP 80000000_H SSP 7FFFFF8_н Memory \leftarrow 8000000_H 8000000_H **7FFFFFC**_H 7FFFFFC_H PS 7FFFFF8_H 7FFFFF8_H PC

85

3.10.4 Table Base Register (TBR)

The table base register (TBR: Table Base Register) indicates the beginning address of the vector table for EIT.

■ Table Base Register (TBR)

The table base register (TBR) consists of 32 bits as shown below:

bit 31 • • • 0 [Initial value] ТВП 000FFC00_H

Obtain a vector address by adding to the TBR the offset value predetermined for an EIT cause.

The table base register (TBR) is initialized to $000FFC00_H$ by a reset.

EIT Vector Table

A 1 KB area from the address indicated in the table base register (TBR) is the vector area for EIT.

The size for each vector is 4 bytes. The relationship between a vector number and a vector address can be expressed as follows:

vctadr = TBR + vctofs

= TBR + (3FCH - 4 x vct)

vctadr: Vector address

vctofs: Vector offset

vct: Vector number

The low-order two bits of the addition result are always handled as 00.

The area from $000FFC00_H$ to $000FFFFF_H$ is the initial area for the vector table upon reset.

Special functions are allocated to some of the vectors.

Table 3.10-3 "Vector Table" shows the vector table on the architecture.

Table 3.10-3 Vector Table

	Interr	upt number	Interrupt	• "	Default	
Interrupt source	Decimal	Hexadecimal	level	Offset	address of TBR	RN
Reset	0	00	-	3FC _H	000FFFFC _H	-
Mode vector	1	01	-	3F8 _H	000FFFF8 _H	-
Reserved for system	2	02	-	3F4 _H	000FFFF4 _H	-
Reserved for system	3	03	-	3F0 _H	000FFFF0 _H	-
Reserved for system	4	04	-	3EC _H	000FFFEC _H	-
Reserved for system	5	05	-	3E8 _H	000FFFE8 _H	-
Reserved for system	6	06	-	3E4 _H	000FFFE4 _H	-
No-coprocessor trap	7	07	-	3E0 _H	000FFFE0 _H	-
Coprocessor error trap	8	08	-	3DC _H	000FFFDC _H	-
INTE instruction	9	09	-	3D8 _H	000FFFD8 _H	-
Instruction break exception	10	0A	-	3D4 _H	000FFFD4 _H	-
Operand break trap	11	0B	-	3D0 _H	000FFFD0 _H	-
Step trace trap	12	0C	-	3CC _H	000FFFCC _H	-
NMI request (tool)	13	0D	-	3C8 _H	000FFFC8 _H	-
Undefined instruction exception	14	0E	-	3C4 _H	000FFFC4 _H	-
NMI request	15	0F	Fixed to 15(F _H)	3C0 _H	000FFFC0 _H	-
External Interrupt 0	16	10	ICR00	3BC _H	000FFFBC _H	6
External Interrupt 1	17	11	ICR01	3B8 _H	000FFFB8 _H	7
External Interrupt 2	18	12	ICR02	3B4 _H	000FFFB4 _H	11
External Interrupt 3	19	13	ICR03	3B0 _H	000FFFB0 _H	12
External Interrupt 4	20	14	ICR04	3AC _H	000FFFAC _H	-
External Interrupt 5	21	15	ICR05	3A8 _H	000FFFA8 _H	-
External Interrupt 6	22	16	ICR06	3A4 _H	000FFFA4 _H	-
External Interrupt 7	23	17	ICR07	3A0 _H	000FFFA0 _H	-
Reload Timer 0	24	18	ICR08	39C _H	000FFF9C _H	8
Reload Timer 1	25	19	ICR09	398 _H	000FFF98 _H	9
Reload Timer 2	26	1A	ICR10	394 _H	000FFF94 _H	10
UART0 (reception completed)	27	1B	ICR11	390 _H	000FFF90 _H	0
UART1 (reception completed)	28	1C	ICR12	38C _H	000FFF8C _H	1

CHAPTER 3 CPU AND CONTROL UNITS

Table 3.10-3 Vector Table (Continued)

	Interr	upt number	Interrupt		Default	
Interrupt source	Decimal	Hexadecimal	level	Offset	address of TBR	RN
UART2 (reception completed)	29	1D	ICR13	388 _H	000FFF88 _H	2
UART0 (transmission completed)	30	1E	ICR14	384 _H	000FFF84 _H	3
UART1 (transmission completed)	31	1F	ICR15	380 _H	000FFF80 _H	4
UART2 (transmission completed)	32	20	ICR16	37C _H	000FFF7C _H	5
DMAC0 (end, error)	33	21	ICR17	378 _H	000FFF78 _H	-
DMAC1 (end, error)	34	22	ICR18	374 _H	000FFF74 _H	-
DMAC2 (end, error)	35	23	ICR19	370 _H	000FFF70 _H	-
DMAC3 (end, error)	36	24	ICR20	36C _H	000FFF6C _H	-
DMAC4 (end, error)	37	25	ICR21	368 _H	000FFF68 _H	-
A/D	38	26	ICR22	364 _H	000FFF64 _H	15
PPG0	39	27	ICR23	360 _H	000FFF60 _H	13
PPG1	40	28	ICR24	35C _H	000FFF5C _H	14
PPG2	41	29	ICR25	358 _H	000FFF58 _H	-
PPG3	42	2A	ICR26	354 _H	000FFF54 _H	-
Reserved for system	43	2B	ICR27	350 _H	000FFF50 _H	-
U-TIMER0	44	2C	ICR28	34C _H	000FFF4C _H	-
U-TIMER1	45	2D	ICR29	348 _H	000FFF48 _H	-
U-TIMER2	46	2E	ICR30	344 _H	000FFF44 _H	-
Time base timer overflow	47	2F	ICR31	340 _H	000FFF40 _H	-
I ² C I/FO*	48	30	ICR32	33C _H	000FFF3C _H	-
I ² C I/FI*	49	31	ICR33	338 _H	000FFF38 _H	-
Reserved for system	50	32	ICR34	334 _H	000FFF34 _H	-
Reserved for system	51	33	ICR35	330 _H	000FFF30 _H	-
16bit free-runtimer*	52	34	ICR36	32C _H	000FFF2C _H	-
ICU0 (fetch)*	53	35	ICR37	328 _H	000FFF28 _H	-
ICU1 (fetch)*	54	36	ICR38	324 _H	000FFF24 _H	-
ICU2 (fetch)*	55	37	ICR39	320 _H	000FFF20 _H	-
ICU3 (fetch)*	56	38	ICR40	31C _H	000FFF1C _H	-
Reserved for system	57	39	ICR41	318 _H	000FFF18 _H	-
Reserved for system	58	ЗA	ICR42	314 _H	000FFF14 _H	-
Reserved for system	59	3B	ICR43	310 _H	000FFF10 _H	-

Table 3.10-3 Vector Table (Continued)

	Interr	upt number	Interrupt	Offset	Default address of TBR	RN
Interrupt source	Decimal	Hexadecimal	level			
Reserved for system	60	3C	ICR44	30C _H	000FFF0C _H	-
Reserved for system	61	3D	ICR45	308 _H	000FFF08 _H	-
Reserved for system	62	3E	ICR46	304 _H	000FFF04 _H	-
Delayed interrupt source bit	63	3F	ICR47	300 _H	000FFF00 _H	-
Reserved for system (used in REALOS)	64	40	-	2FC _H	000FFEFC _H	-
Reserved for system (used in REALOS)	65	41	-	2F8 _H	000FFEF8 _H	-
Reserved for system	66	42	-	2F4 _H	000FFEF4 _H	-
Reserved for system	67	43	-	2F0 _H	000FFEF0 _H	-
Reserved for system	68	44	-	2EC _H	000FFEEC _H	-
Reserved for system	69	45	-	2E8 _H	000FFEE8 _H	-
Reserved for system	70	46	-	2E4 _H	000FFEE4 _H	-
Reserved for system	71	47	-	2E0 _H	000FFEE0 _H	-
Reserved for system	72	48	-	2DC _H	000FFEDC _H	-
Reserved for system	73	49	-	2D8 _H	000FFED8 _H	-
Reserved for system	74	4A	-	2D4 _H	000FFED4 _H	-
Reserved for system	75	4B	-	2D0 _H	000FFED0 _H	-
Reserved for system	76	4C	-	2CC _H	000FFECC _H	-
Reserved for system	77	4D	-	2C8 _H	000FFEC8 _H	-
Reserved for system	78	4E	-	2C4 _H	000FFEC4 _H	-
Reserved for system	79	4F	-	2C0 _H	000FFEC0 _H	-
Used in INT instruction	80 to 255	50 to FF	-	2BC _H to 000 _H	000FFEBC _H to 000FFC00 _H	-

* : Reserved for system (MB91301, MB91V301)

3.10.5 Multiple EIT Processing

If multiple EIT causes occur at the same time, the CPU repeats the operation of selecting and accepting one of the EIT causes, executing the EIT sequence, and then detecting EIT causes again. If there are no more EIT causes be accepted while the CPU is detecting EIT causes, the CPU executes the handler instruction of the last accepted EIT cause. As a result, the order of executing handlers for multiple EIT causes that occur at the same time is determined according to the following two elements:

- Priority of EIT causes to be accepted
- How other causes can be masked when one cause is accepted

Priority of EIT Causes to Be Accepted

The priority of EIT causes to be accepted is the order of causes for which the EIT sequence is to be executed (that is, saving the PS and PC, updating the PC, and masking other causes, if required). The handler of a cause accepted earlier is not necessarily executed earlier.

Table 3.10-4 "Priority of EIT Causes to Be Accepted and Masking of Other Causes" shows the priority of EIT causes to be accepted.

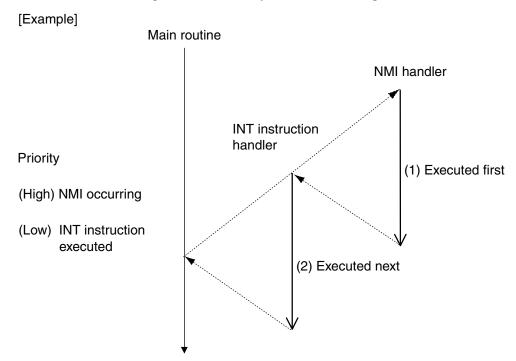
Priority of acceptance	Cause	Masking of other causes
1	Reset	Other causes are abandoned.
2	Undefined instruction exception	Canceled
3	INT instruction	I flag=0
4	No-coprocessor error trap Coprocessor error trap	-
5	User interrupt	ILM=level of cause accepted
6	NMI (for users)	ILM=15
7	(INTE instruction)	ILM=4 *
8	NMI (for emulators)	ILM=4
9	Step trace trap	ILM=4
10	INTE instruction	ILM=4

Table 3.10-4 Priority of EIT Causes to Be Accepted and Masking of Other Causes

* : The priority is 6 only if the INTE instruction and the NMI for emulators occur at the same time. The NMI for emulators is used in the MB91301 series for breaks due to data access.

In consideration of masking other causes after an EIT cause is accepted, the handlers of EIT causes that occur at the same time are executed in the order shown in Table 3.10-5 "Order of Executing EIT Handlers".

Order of executing handlers	Cause
1	Reset ^{*1}
2	Undefined instruction exception
3	Step trace trap ^{*2}
4	INTE instruction ^{*2}
5	NMI (for users)
6	INT instruction
7	User interrupt
8	No-coprocessor trap, coprocessor error trap


Table 3.10-5 Order of Executing EIT Handlers

*1: Other causes are abandoned.

*2: If the INTE instruction is executed in steps, only a step trace trap EIT occurs. An INTE cause is ignored.

Figure 3.10-2 "Multiple EIT Processing" shows an example of multiple EIT processing.

Figure 3.10-2 Multiple EIT Processing

3.10.6 EIT Operations

This section describes EIT operations.

EIT Operations

In the following, it is assumed that the destination source PC indicates the address of the instruction that detected an EIT cause.

In addition, "address of the next instruction" means that the instruction that detected EIT is as follows:

- If LDI is 32: PC + 6
- If LDI is 20 and COPOP, COPLD, COPST, and COPSV are used: PC + 4
- Other instructions: PC + 2

Operation of User Interrupt/NMI

If an interrupt request for a user interrupt or a user NMI occurs, whether the request can be accepted is determined with the following procedure:

- Compare the interrupt levels of requests that have occurred simultaneously and select the request with the highest level (the smallest value). As levels to be compared, the value held in the corresponding ICR is used for a maskable interrupt and a predetermined constant is used for an NMI.
- If multiple interrupt requests with the same level occur, select the interrupt request with the smallest interrupt number.
- 3. Mask and do no accept an interrupt request with an interrupt level greater than or equal to the level mask value. Go to Step 4) if the interrupt level is less than the level mask value.
- Mask and do not accept the selected interrupt request if it is maskable and the I flag is set to
 Go to Step 5) if the I flag is 1. If the selected interrupt request is an NMI, go to Step 5) regardless of the I flag value.
- 5. If the above conditions are met, the interrupt request is accepted at a break in the instruction processing.

If a user interrupt or NMI request is accepted when EIT requests are detected, the CPU operates as follows, using an interrupt number corresponding to the accepted interrupt request. Parentheses show an address indicated by the register.

[Operation]

- 1. (TBR + Vector offset of accepted interrupt request) --> TMP
- 2. SSP-4 --> SSP
- 3. PS --> (SSP)
- 4. SSP-4 --> SSP
- 5. Address of next instruction --> (SSP)
- 6. Interrupt level of accepted request --> ILM
- 7. "0" --> S flag
- 8. TMP --> PC

If a user interrupt or NMI request is accepted when EIT requests are detected, the CPU operates as follows, using an interrupt number corresponding to the accepted interrupt request. Parentheses show an address indicated by the register.

Operation of INT Instruction

The INT #u8 instruction operates as shown below.

A branch to the interrupt handler for the vector indicated by u8 generation.

[Operation]

- 1. (TBR + 3FC_H-4 x u8) --> TMP
- 2. SSP-4 --> SSP
- 3. PS --> (SSP)
- 4. SSP-4 --> SSP
- 5. PC + 2 --> (SSP)
- 6. "0" --> I flag
- 7. "0" --> S flag
- 8. TMP --> PC

Operation of INTE Instruction

The INTE instruction operates as shown below.

A branch to the interrupt handler for the vector indicated by vector number #9 generation.

[Operation]

- 1. (TBR+3D8_H) --> TMP
- 2. SSP-4 --> SSP
- 3. PS --> (SSP)
- 4. SSP-4 --> SSP
- 5. PC + 2 --> (SSP)
- 6. "00100" --> ILM
- 7. "0" --> S flag
- 8. TMP --> PC

Do not use the INTE instruction in the processing routine of the INTE instruction or a step trace trap.

During step execution, no EIT due to INTE generation.

Operation of Step Trace Trap

Set the T flag in the SCR of the PS to enable the step trace function. A trap and a break then occur every time an instruction is executed. A step trace trap is detected under the following conditions:

- T flag =1
- There is no delayed branch instruction.
- A processing routine other than the INTE instruction or a step trace trap is in progress.

If the above conditions are met, a break occurs between instruction operations.

[Operation]

- 1. (TBR+3CC_H) --> TMP
- 2. SSP-4 --> SSP
- 3. PS --> (SSP)
- 4. SSP-4 --> SSP
- 5. Address of next instruction --> (SSP)
- 6. "00100" --> ILM
- 7. "0" --> S flag
- 8. TMP --> PC

Set the T flag to enable the step trace trap to prohibit a user NMI and a user interrupt. No EIT occurs due to the INTE instruction.

A trap occurs in the MB91301 series in the instruction following the one in which the T flag has been set.

Operation of Undefined Instruction Exception

If, during instruction decode, an undefined instruction is detected, an undefined instruction exception occurs.

An undefined instruction exception is detected under the following conditions:

- An undefined instruction is detected during instruction decode.
- The instruction is not located in the delay slot (it does not immediately follow

If the above conditions are met, an undefined instruction exception and a break occur.

[Operation]

- 1. (TBR+3C4_H) -> TMP
- 2. SSP-4 --> SSP
- 3. PS --> (SSP)
- 4. SSP-4 --> SSP
- 5. PC --> (SSP)
- 6. "0" --> S flag
- 7. TMP --> PC

The PC value to be saved is the address of an instruction that detected an undefined instruction exception.

No-coprocessor Trap

If a coprocessor instruction using a coprocessor that is not installed is executed, a nocoprocessor trap occurs.

[Operation]

- 1. (TBR+3E0_H) --> PC
- 2. SSP-4 --> SSP
- 3. PS --> (SSP)
- 4. SSP-4 --> SSP
- 5. Address of next instruction --> (SSP)
- 6. "0" --> S flag
- 7. TMP --> PC

Coprocessor Error Trap

If an error occurs while a coprocessor is being used and then a coprocessor instruction that operates on the coprocessor is executed, a coprocessor error trap occurs.

[Operation]

- 1. (TBR+3DC_H) --> PC
- 2. SSP-4 --> SSP
- 3. PS --> (SSP)
- 4. SSP-4 --> SSP
- 5. Address of next instruction --> (SSP)
- 6. "0" --> S flag
- 7. TMP --> PC

Operation of RETI Instruction

The RETI instruction specifies return from the EIT processing routine.

[Operation]

- 1. (R15) --> PC
- 2. R15+4 --> R15
- 3. (R15) --> PS
- 4. R15+4 --> R15

The RETI instruction must be executed while the S flag is set to 0.

Precaution on Delay Slot

A delay slot for a branch instruction has restrictions regarding EIT. See Section 3.9 "Branch Instructions".

3.11 Reset (Device Initialization)

This section describes a reset (that is, initialization) of the MB91301 series.

Reset (Device Initialization)

If a reset source occurs, the device stops all the programs and hardware operations and completely initializes the state. This state is called the reset state.

When a reset source no longer exists, the device starts programs and hardware operations from their initial state. The series of operations from the reset state to the start of operations is called the reset sequence.

3.11.1 Reset Levels

The reset operations of the MB91301 series are classified into two levels, each of which has different causes and initialization operations. This section describes these reset levels.

Settings Initialization Reset (INIT)

The highest-level reset, which initializes all settings, is called a settings initialization reset (INIT). A settings initialization reset (INIT) mainly performs the following initialization:

O Items initialized in a settings initialization reset (INIT)

- All internal clock settings (clock source selection, PLL control, and divide-by setting)
- · All external bus extended interface settings
- · All settings on pin statuses other than the above settings
- All sections initialized by an operation initialization reset (RST)

For more information, see the description of each of these functions.

Note:

After power-on, be sure to apply the settings initialization reset (INIT) at the INIT pin.

Operation Initialization Reset (RST)

A normal-level reset that initializes the operation of a program is called an operation initialization reset (RST).

If a settings initialization reset (INIT) occurs, an operation initialization reset (RST) also occurs.

An operation initialization reset (RST) mainly initializes the following items:

O Items initialized by an operation initialization reset (RST)

- Program operation
- CPU and internal buses
- Register settings of peripheral circuits
- I/O port settings
- All CS0 area settings of external buses

For more information, see the description of each of these functions.

3.11.2 Reset Sources

This section describes the reset sources and the reset levels in the MB91301 series. To determine reset sources that have occurred in the past, read the RSRR (reset source register). For more information about registers and flags described in this section, see Section 3.12 "Clock Generation Control".

INIT Pin Input (Settings Initialization Reset Pin)

The INIT pin, which is an external pin, is used as the settings initialization reset pin.

A settings initialization reset (INIT) request is generated while the Low level is being input to this pin.

Input the High level to this pin to clear a settings initialization reset (INIT) request.

If a settings initialization reset (INIT) is generated in response to a request from this pin, Bit 15 (INIT bit) of the RSRR (reset source register) is set.

Because a settings initialization reset (INIT) in response to a request from this pin has the highest interrupt level among all reset sources, it has precedence over any other input, operation, or state.

Immediately after power-on, be sure to apply a settings initialization reset (INIT) at the INIT pin. To assure the oscillation stabilization wait time for the oscillation circuit immediately after poweron, input the Low level to the INIT pin for the stabilization wait time required by the oscillation circuit. INIT at the INIT pin initializes the oscillation stabilization wait time to the minimum value.

- Reset source: Low level input to the external INIT pin
- Source of clearing: High level input to the external INIT pin
- Reset level: Settings initialization reset (INIT)
- Corresponding flag: Bit 15 (INIT)

Software Reset (STCR: SRST Bit Writing)

If 0 is written to Bit 4 (SRST bit) of the standby control register (STCR), a software reset request occurs. A software reset request is an operation initialization reset (RST) request.

When the request is accepted and a operation initialization reset (RST) is generated, the software reset request is cleared.

If an operation initialization reset (RST) is generated due to a software reset request, a bit (SRST bit) in the RSRR (reset source register) is set.

An operation initialization reset (RST) is generated due to a software reset request only after all bus access has stopped and if Bit 7 (SYNCR bit) of the time base counter control register (TBCR) has been set (synchronization reset mode). Thus, depending on the bus usage status, a long time is required before an operation initialization reset (RST) occurs.

- Reset source: Writing 0 to Bit 4 (SRST) of the standby control register (STCR)
- Source of clearing: Generation of an operation initialization reset (RST)
- Reset level: Operation initialization reset (RST)
- Corresponding flag: Bit 11(SRST)

Watchdog Reset

Writing to the watchdog timer control register (RSRR) starts the watchdog timer. Unless $A5_H$ / $5A_H$ is written to the watchdog reset postpone register (WPR) within the cycle specified in Bits 9 and 8 (WT1 and WT0 bits) in the RSRR, a watchdog reset request occurs.

A watchdog reset request is a settings initialization reset (INIT) request. If, after the request is accepted, a settings initialization reset (INIT) occurs or an operation initialization reset (RST) occurs, the watchdog reset request is cleared.

If a settings initialization reset (INIT) is generated due to a watchdog reset request, Bit 13 (WDOG bit) in the reset source register (RSRR) is set.

Note that, if a settings initialization reset (INIT) is generated due to a watchdog reset request, the oscillation stabilization wait time is not initialized.

- Reset source: Setting cycle of the watchdog timer elapses
- Source of clearing: Generation of a settings initialization reset (INIT) or an operation initialization reset (RST)
- Reset level: Settings initialization reset (INIT)
- Corresponding flag: Bit 13 (WDOG)

3.11.3 Reset Sequence

When a reset source no longer exists, the device starts to execute the reset sequence. A reset sequence has different operations depending on the reset level. This section describes the operations of the reset sequence for different reset levels.

Setting Initialization Reset (INIT) Clear Sequence

If a settings initialization reset (INIT) request is cleared, the following operations are performed one step at a time for the device.

- 1. Clear the settings initialization reset (INIT) and enter the oscillation stabilization wait state.
- 2. For the oscillation stabilization wait time (set with Bits 3 and 2 [OS1 and OS0 bits] in the STCR), maintain the operation initialization reset (RST) state and stop the internal clock.
- 3. In the operation initialization reset (RST) state, start internal clock operation.
- 4. Clear the operation initialization reset (RST) and enter the normal operating state.
- 5. Read the mode vector from address 000FFFF8_H.
- 6. Write the mode vector to the MODR (mode register) at address 000007FD_H.
- 7. Read the reset vector from address 000FFFFC_H.
- 8. Write the reset vector to the program counter (PC).
- 9. The program starts execution from the address loaded in the program counter (PC).

Operation Initialization Reset (RST) Clear Sequence

If an operation initialization reset (RST) request is cleared, the following operations are performed one step at a time for the device.

- 1. Clear the operation initialization reset (RST) and enter the normal operating state.
- 2. Read the mode vector from address 000FFFF8_H
- Write the mode vector to the MODR (mode register) at address 000007FD_H
- 4. Read the reset vector from address 000FFFFC_H.
- 5. Write the reset vector to the program counter (PC).
- 6. The program starts execution from the address loaded in the program counter (PC).

3.11.4 Oscillation Stabilization Wait Time

If a device returns from the state in which the original oscillation was or may have been stopped, the device automatically enters the oscillation stabilization wait state. This function prevents the use of oscillator output after starting before oscillation has stabilized.

For the oscillation stabilization wait time, neither an internal nor an external clock is supplied; only the built-in time base counter runs until the stabilization wait time set in the standby control register (STCR) has elapsed.

This section describes the oscillation stabilization wait operation.

Sources of an Oscillation Stabilization Wait

The following lists sources of an oscillation stabilization wait.

• Clearing of a settings initialization reset (INIT)

The device enters the oscillation stabilization wait state if a settings initialization reset (INIT) is cleared for a variety of reasons.

When the oscillation stabilization wait time has elapsed, the device enters the operation initialization reset (RST) state.

O Returning from stop mode

The device enters the oscillation stabilization wait state immediately after stop mode is cleared.

However, if it is cleared by a settings initialization reset (INIT) request, the device enters the settings initialization reset (INIT) state. Then, after the settings initialization reset (INIT) is cleared, the device enters the oscillation stabilization wait state.

When the oscillation stabilization wait time has elapsed, the device enters the state corresponding to the source that cleared stop mode:

- Return due to input of a valid external interrupt request (including NMI): The device enters the normal operating state.
- Return due to a settings initialization reset (INIT) request: The device enters the operation initialization reset (RST) state.
- Return due to an operation initialization reset (RST) request: The device enters the operation initialization reset (RST) state.

O Returning from an abnormal state when PLL is selected

If, while the device is operating with PLL as the source clock, an abnormal condition^{*} occurs in PLL control, the device automatically enters an oscillation stabilization wait to assure the PLL lock time.

When the oscillation stabilization wait time has elapsed, the device enters the normal operating state.

* : The multiply-by rate is changed while PLL is working, or an incorrect bit such as a bit equivalent to PLL operation enable bit is generated.

Selecting an Oscillation Stabilization Wait Time

The oscillation stabilization wait time is measured with the built-in time base counter.

If a source for an oscillation stabilization wait occurs and the device enters the oscillation stabilization wait state, the built-in time base counter is initialized and then it starts to measure the oscillation stabilization wait time.

Using Bits 3 and 2 (OS1 and OS2 bits) of the standby control register (STCR), select and set one of the four types of oscillation stabilization wait time.

Once selected, a setting is initialized only if a settings initialization reset (INIT) is generated due to the external INIT pin. The oscillation stabilization wait time that has been set before a reset is maintained if a settings initialization reset (INIT) is generated or an operation initialization reset (RST) is generated due to a watchdog reset or hardware standby condition.

The four types of oscillation stabilization wait time settings are designed for the following four types of use:

- OS1, OS0=00: No oscillation stabilization wait time (if neither PLL nor the oscillator should stop in stop mode)
- OS1, OS0=01: PLL lock wait time (if an external clock will be input or the oscillator should not stop in stop mode)
- OS1, OS0=10: Oscillation stabilization wait time (intermediate) (if an oscillator that stabilizes quickly, such as a ceramic vibrator, is used)
- OS1, OS0=10: Oscillation stabilization wait time (long) (if an ordinary quartz oscillator will be used)

Immediately after power-on, be sure to apply the settings initialization reset (INIT) at the INIT pin.

To assure the oscillation stabilization wait time of the oscillation circuit immediately after poweron, maintain Low-level input to the INIT pin for the stabilization wait time required by the oscillation circuit. (INIT generated due to the INIT pin initializes the oscillation stabilization wait time setting to the minimum value.)

If a hardware standby request occurs immediately after power-on, a settings initialization reset (INIT) generated due to the $\overline{\text{INIT}}$ pin has precedence. If later the setting initialization rest (INIT) generated due to the $\overline{\text{INIT}}$ pin is cleared and the hardware standby state is entered, the oscillation stabilization wait time setting is initialized to the maximum value. Thus, the oscillation stabilization wait time is the maximum value after the hardware standby request has been cleared.

3.11.5 Reset Operation Modes

Two modes for an operation initialization reset (RST) are provided: normal (asynchronous) reset mode and synchronous reset mode. The operation initialization reset mode is selected with Bit 7 (SYNCR bit) of the time base counter control register (TBCR). This mode setting is initialized only by a settings initialization reset (INIT). A settings initialization reset always results in an asynchronous reset. This section describes the operation of these modes.

Normal Reset Operation

Normal reset operation refers to entering the operation initialization reset (RST) state or hardware standby state immediately after an operation initialization reset (RST) request or a hardware standby request occurs.

If, in this mode, a reset (RST) request or a hardware standby request is accepted, the device immediately enters the reset (RST) state or the hardware standby state regardless of the operating state of the internal bus.

In this mode, the result of bus access performed prior to each status transition is not guaranteed. However, these requests can certainly be accepted.

If Bit 7 (SYNCR bit) of the time base counter control register (TBCR) is set to 0, normal reset mode is selected. The initial value after a settings initialization reset (INIT) is normal reset mode.

Synchronous Reset Operation

Synchronous reset operation refers to entering the operation initialization reset (RST) state or the hardware standby state after all bus access has stopped when an operation initialization reset (RST) request or a hardware standby request occurs.

If, in this mode, a reset (RST) request or a hardware standby request is accepted, the device does not enter the reset (RST) state or the hardware standby state while internal bus access is in progress.

If the above request is accepted, a sleep request is issued to the internal buses. If all the buses stop and enter the sleep state, the device enters the operation initialization reset (RST) state or the hardware standby state.

In this mode, the result of all bus accesses is guaranteed because all bus access is stopped prior to each status transition.

If bus access does not stop for some reason, no requests can be accepted while the bus access is in progress. Even in this case, the settings initialization reset (INIT) is immediately valid.

Bus access may not stop in the following cases:

- A bus release request (BRQ) continues to be input to the external extended bus interface, bus release acknowledge (BGRNT) is valid, and a new bus access request arrives from an internal bus.
- A ready request (RDY) continues to be input to the external extended bus interface and bus wait is valid. In the following cases, the device eventually enters another state but only after a long time.
- When self refreshing in sleep mode has been set with the SDRAM interface activated (State transition does not occur until the self refresh mode setting is completed.)

Reference:

The DMA controller, which stops transfer when a request is accepted, does not delay transition to another state. If Bit 7 (SYNCR bit) of the time base counter control register (TBCR) is set to 1, synchronous reset mode is selected. The initial value after a settings initialization reset (INIT) is normal reset mode.

3.12 Clock Generation Control

This section describes clock generation and control.

Clock Generation Control

The internal operating clock of the MB91301 series is generated as follows:

- Selection of a source clock: Select a clock supply source.
- Generation of a base clock: Divide the source clock by two or perform PLL oscillation to generate a base clock.
- Generation of an internal clock: Divide the base clock and generate four types of operating clocks, which are supplied to each section.

Source Clock

○ Self-induced oscillation mode (X0/X1 pin input)

In this mode, an oscillator is connected to external oscillation pins and the original oscillation generated by the built-in oscillation circuit is used as the source clock.

The source for supply of all clocks, including the external bus clock, is the MB91301 series itself.

The main clock, generated from the X0/X1 pins, is intended to be used as a high-speed clock.

The main clock is multiplied by the built-in main PLL, each of which can be independently controlled.

Generate an internal base clock by selecting one of the following source clocks:

- Main clock divided by two
- Main clock multiplied in the main PLL

Select a source clock by setting the clock source control register (CLKR).

3.12.1 PLL Controls

Operation (oscillation) enable and disable and the multiply-by rate setting can be independently controlled for each of the PLL oscillation circuits corresponding to the main source clock. Each control is set in the clock source control register (CLKR). This section describes each control.

PLL Operation Enable

To enable or disable the main PLL oscillation, set Bit 10 (PLL1EN bit) of the clock source control register (CLKR).

O PLL operation control in self-induced oscillation mode

In self-induced oscillation mode, either the operation enable/disable bit or the multiply-by rate setting bit is initialized to 0 after a settings initialization reset (INIT), causing the PLL oscillation to stop. While it is stopped, PLL output cannot be selected as the source clock.

When the program operation starts, set the multiply-by rate of the PLL to be used as the clock source, enable it, and switch the source clock after the PLL lock wait time elapses. For the PLL lock wait time, use of a time base timer interrupt is recommended.

While PLL output is selected as the source clock, the PLL cannot be stopped (writing to the register is disabled). To stop a PLL upon transition to stop mode, reselect as the source clock the main clock divided by two before stopping the PLL.

If Bit 0 (OSCD1 bit) or Bit 1 (OSCD2 bit) of the standby control register (STCR) is set to stop oscillation in stop mode, the corresponding PLL automatically stops when the device enters stop mode. As a result, you do not need to set operation stop. When the device returns from stop mode later, the PLL automatically restarts the oscillation operation. If oscillation is not set to stop in stop mode, the PLL does not automatically stop. In this case, set operation stop before transition to stop mode as required.

O PLL operation control in external clock mode

In external clock mode, the main PLL continues the oscillation operation except in the settings initialization reset (INIT) state or in stop mode regardless of the settings of both the bits.

If Bit 0 (OSCD1 bit) of the standby control register (STCR) is set to stop the oscillation in stop mode, the main PLL automatically stops when the device enters stop mode. When the device returns from stop mode later, the PLL automatically restarts the oscillation operation. If oscillation is not set to stop in stop mode, the PLL does not stop.

Notes:

- To perform PLL operation on this model, the frequencies of self-excited oscillation and external clock input must be set to 12.5 MHz to 16.5 MHz.
- If the PLL clock mode is selected, the microcontroller attempt to be working with the selfoscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

PLL Multiply-by Rate

Set the multiply-by rate of the main PLL in Bits 14 to 12 (PLL1S2, PLL1S1, and PLL1S0 bits) of the clock source control register (CLKR).

After a settings initialization reset (INIT), all bits are initialized to 0.

O PLL multiply-by rate setting in self-induced oscillation mode

To change the PLL multiply-by rate setting from the initial value in self-induced oscillation mode, do so before or as soon as the PLL is enabled after the program has started execution. After changing the multiply-by rate, switch the source clock after the lock wait time elapses. For the PLL lock wait time, use of a time base timer interrupt is recommended.

To change the PLL multiply-by rate setting during operation, switch the source clock to a clock other than the PLL in question before making the change. After changing the multiply-by rate, switch the source clock after the lock wait time has elapsed, as described above.

You can also change the PLL multiply-by rate setting while using a PLL. In this case, however, the program stops running after the device automatically enters the oscillation stabilization wait state after the multiply-by rate setting is rewritten and does not resume execution until the specified oscillation stabilization wait time has elapsed.

The program does not stop running if the clock source is switched to a clock other than a PLL.

O PLL multiply-by rate setting in external clock mode

If you change the PLL multiply-by rate setting from the initial value in external clock mode, after the program starts execution, the PLL is already enabled and used as the source clock. Thus, the program stops running after the device automatically enters the oscillation stabilization wait state after the multiply-by rate setting is rewritten and does not resume operation until the specified oscillation stabilization wait time elapses. Thus, be sure to set the oscillation stabilization wait time to an appropriate value (larger than the PLL lock wait time defined in the specification) before changing the multiply-by rate setting. In this mode, the oscillation stabilization wait time setting has the initial value 01 (PLL lock wait time supported).

3.12.2 Oscillation Stabilization Wait Time and PLL Lock Wait Time

If a clock selected as the source clock is not already stabilized, an oscillation stabilization wait time is required (See Section 3.11.4 "Oscillation Stabilization Wait Time").

For a PLL, a lock wait time is required after operation starts until the output stabilizes to the specified frequency.

This section describes the wait time used in various situations.

○ Wait time after power-on

After power-on, an oscillation stabilization wait time for the main clock oscillation circuit is required.

Since the oscillation stabilization wait time setting is initialized to the minimum value due to INIT pin input (settings initialization reset pin), assure the oscillation stabilization wait time by using the time during which the Low level is sent to the INIT pin input.

In this state, since no PLL is enabled, no lock wait time needs to be considered.

O Wait time after setting initialization

If a settings initialization reset (INIT) is cleared, the device enters the oscillation stabilization wait state. In this case, the specified oscillation stabilization wait is internally generated. In the first oscillation stabilization wait state after input from the $\overline{\text{INIT}}$ pin, the setting time is initialized to the minimum value, soon ending this state, and the device enters the operation initialization reset (RST) state.

However, if the Low level is sent to the $\overline{\text{HST}}$ pin input (hardware standby pin) in this state, the device enters the hardware standby state and the oscillation circuit is stopped. Thus, the oscillation stabilization wait time is initialized to the maximum value for reasons of safety.

If, after a program starts running, a settings initialization reset (INIT) is generated for a reason other than $\overline{\text{INIT}}$ pin input and is then cleared, the oscillation stabilization wait time specified in the program is internally generated.

In these states, since no PLL is enabled, no lock wait time needs to be considered.

• Wait time after enabling a PLL

If you enable a stopped PLL after a program starts execution, use the PLL output only after the lock wait time elapses. If the PLL is not selected as the source clock, the program can run even during the lock wait time. For the PLL lock wait time, use of a time base timer interrupt is recommended.

O Wait time after changing the PLL multiply-by rate

If you change the multiply-by rate setting of a running PLL after a program starts execution, use the PLL output only after lock wait time elapses.

If the PLL is not selected as the source clock, the program can run even during the lock wait time.

For the PLL lock wait time, use of a time base timer interrupt is recommended.

O Wait time after returning from stop mode

If, after a program starts execution, the device enters stop mode and then stop mode is cleared, the oscillation stabilization wait time specified in the program is internally generated. If the clock oscillation circuit selected as the source clock is set to stop in stop mode, the oscillation stabilization wait time of the oscillation circuit or the lock wait time of the PLL in use, whichever is longer, is required. Set the oscillation stabilization wait time before entering stop mode.

If the clock oscillation circuit selected as the source clock is not set to stop in stop mode, the PLL does not automatically stop. No oscillation stabilization wait time is required unless the PLL has stopped. Setting the oscillation stabilization wait time to the minimum value before stop mode is entered is recommended. However, if a hardware standby request is entered in stop mode, the oscillation circuit stops and an oscillation stabilization wait time will required after return from stop mode. If the wait time is set to the minimum value, the oscillation stabilization wait time cannot be assured and operation after return from stop mode is not guaranteed. For cases such as this, set the oscillation stabilization wait time for the oscillation circuit.

3.12.3 Clock Distribution

An operating clock for each function is generated based on the base clock generated from the source clock. A total of four internal operating clocks are provided. A divideby rate can be set independently for each of them.

This section describes these internal operating clocks.

■ CPU Clock (CLKB)

This clock is used for the CPU, internal memory, and internal buses.

It is used by the following circuits:

- CPU
- Instruction cache
- Built-in RAM and ROM
- Bit search module
- I bus, D bus, X bus, and F bus
- DMA controller
- DSU (development tool interface circuit)

Since 68 MHz is the upper-limit frequency for operation, do not set a combination of multiply-by rate and divide-by rate that results in a frequency exceeding this limit.

Peripheral Clock (CLKP)

This clock is used for peripheral circuits and peripheral buses.

It is used by the following circuits:

- Peripheral bus
- Clock controller (only for the bus interface)
- Interrupt controller
- Peripheral I/O ports
- I/O port bus
- External interrupt input
- UART
- 16-bit timer
- A/D converter
- I²C interface

Since 34 MHz is the upper-limit frequency for operation, do not set a combination of multiply-by rate and divide-by rate that results in a frequency exceeding this limit.

External Bus Clock (CLKT)

This clock is used for external extended bus interfaces.

It is used by the following circuits:

- External extended bus interface
- External CLK output

Since 68 MHz is the upper-limit frequency for operation, do not set a combination of multiply-by rate and divide-by rate that results in a frequency exceeding this limit.

3.12.4 Clock Division

A divide-by rate can be set independently for each of the internal operating clocks. With this function, an optimal operating frequency can be set for each circuit.

Clock Division

Set a divide-by rate in Basic Clock Division Setting Register 0 (DIVR0) and Basic Clock Division Setting Register 1 (DIVR1). Each of these registers has four setting bits and (Register setting value + 1) is the divide-by rate of the clock in relation to the base clock. Even if the divide-by rate setting is an odd number, the duty is always 50.

If the setting value is changed, the new divide-by rate becomes valid at the leading edge of the next clock after the setting is made.

The divide-by rate setting is not initialized if an operation initialization reset (RST) occurs and the setting made before the reset occurs is retained. The divide-by rate setting is initialized only if a settings initialization reset (INIT) occurs. In the initial state, all clocks other than the peripheral clock (CLKP) have a divide-by rate of 1. Thus, be sure to set the divide-by rate before changing the source clock to a faster clock.

An upper-limit frequency for the operation is set for each clock. If you set a combination of source clock, PLL multiply-by rate setting, and divide-by rate setting that results in a frequency exceeding this upper-limit frequency, operation is not guaranteed. Be extra careful of the order in which you change settings to select the source clock and to configure the associated setting items.

3.12.5 Block Diagram of Clock Generation Controller

This section provides a block diagram of the clock generation controller.

Block Diagram

Figure 3.12-1 "Block Diagram of Clock Generation Controller" shows a block diagram of the clock generation controller.

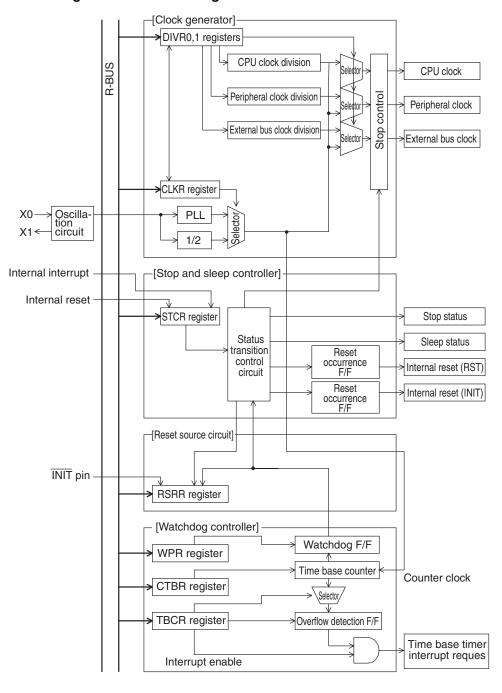


Figure 3.12-1 Block Diagram of Clock Generation Controller

3.12.6 Register of Clock Generation Controller

This section describes the functions of registers to be used in the clock generation controller.

Reset Source Register/Watchdog Timer Control Register (RSRR)

Figure 3.12-2 "Reset Source Register/Watchdog Timer Control Register (RSRR)" shows the configuration of the reset source register/watchdog timer control register (RSRR).

Figure 3.12-2 Reset Source Register/Watchdog Timer Control Register (RSRR)

bit	15	14	13	12	11	10	9	8
Address:00000480 _H	INIT	-	WDOG	-	SRST	-	WT1	WT0
	R	R	R	R	R	R	R/W	R/W
Initial value (INIT pin)	1	0	0	0	0	0	0	0
Initial value (INIT)	*	0	*	х	х	*	0	0
Initial value (RST)	х	х	х	*	*	х	0	0
*: Varies according to the source.								
x: Not initialized								

This register holds the source of the last reset that occurred as well as the interval setting and startup control for the watchdog timer. If the timer is read, the reset source that has been held is cleared after it is read. If more than one reset is generated before this register is read, reset source flags are accumulated and the multiple flags are set.

Writing to this register starts the watchdog timer. Thereafter, the watchdog timer continues running until a reset (RST) occurs.

The following describes the functions of the reset source register/watchdog timer control register (RSRR) bits.

[Bit 15] INIT (INITialize reset occurred)

This bit indicates whether a reset (INIT) occurred due to INIT pin input.

0	No INIT occurred due to INIT pin input.
1	INIT occurred due to INIT pin input.

- This bit is initialized to 0 after it is read.
- This bit is readable; writing to the bit has no effect on the bit value.

[Bit 14] HSTB (Hardware STandBy reset occurred)

This bit indicates whether a reset (INIT) occurred due to $\overline{\text{HST}}$ pin input.

0	No INIT occurred due to \overline{HST} pin input.
1	INIT occurred due to \overline{HST} pin input.

• This bit is initialized to 0 after a reset (INIT) due to INIT pin input or just after it is read.

• This bit is readable; writing to the bit has no effect on the bit value.

[Bit 13] WDOG (WatchDOG reset occurred)

This bit indicates whether a reset (INIT) occurred due to the watchdog timer.

0	No INIT occurred due to the watchdog timer.
1	INIT occurred due to watchdog timer.

- This bit is initialized to 0 after a reset (INIT) due to INIT pin input or just after it is read.
- This bit is readable; writing to the bit has no effect on the bit value.

[Bit 12] Reserved bit

[Bit 11] SRST (Software ReSeT occurred)

This bit indicates whether a reset (RST) occurred due to writing to the SRST bit of the STCR register (a software reset).

0	No RST occurred due to a software reset.
1	RST occurred due to a software reset.

- This bit is initialized to 0 after a reset (INIT) due to INIT pin input or just after it is read.
- This bit is readable; writing to the bit has no effect on the bit value.

[Bit 10] Reserved bit

[Bits 9, 8] WT1, WT0 (Watchdog interval Time select)

This bit sets the interval of the watchdog timer.

The values written to these bits determine the interval of the watchdog timer, which can be selected from the four types shown in Table 3.12-1 "Interval Setting of Watchdog Timer".

WT1	₩ТО	Minimum required interval for writing to the WPR to suppress a watchdog reset	Time from writing the last 5AH to the WPR until a watchdog reset occurs
0	0	φ x 2 ¹⁶ (initial value)	$\phi \ge 2^{16}$ to $\phi \ge 2^{17}$
0	1	φ x 2 ¹⁸	$\phi \ge 2^{18}$ to $\phi \ge 2^{19}$
1	0	φ x 2 ²⁰	$\phi \ge 2^{20}$ to $\phi \ge 2^{21}$
1	1	φ x 2 ²²	$\phi \ge 2^{22}$ to $\phi \ge 2^{23}$

Table 3.12-1 Interval Setting of Watchdog Timer

φ: Frequency of the system base clock

- These bits are initialized to 00 after a reset (INIT).
- These bits are readable, but are writable only once after a reset (RST). Any further writing is disabled.

Standby Control Register (STCR)

Figure 3.12-3 "Configuration of Standby Control Register (STCR) Bits" shows the configuration of the standby control register (STCR).

Figure 3.12-3 Configuration of Standby Control Register (STCR) Bits

bit	7	6	5	4	3	2	1	0
Address:00000481 _H	STOP	SLEEP	HIZ	SRST	OS1	OS0	-	OSCD1
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value (INIT pin)	0	0	1	1	0	0	1	1
Initial value ($\overline{\mathrm{HST}}$) *	0	0	1	1	1	1	1	1
Initial value (INIT)	0	0	1	1	х	х	1	1
Initial value (RST)	0	0	Х	1	Х	х	х	х

* : Occurs only at the same time as initialization due to the INIT pin. Otherwise, the same as INIT.

The standby control register (STCR) controls the operating mode of the device.

This register controls the transition to the two standby modes of stop and sleep, pins when in stop mode, and the stopping of oscillation stop. It also sets the oscillation stabilization wait time and issues software resets.

The following describes the functions of the standby control register (STCR) bits.

[Bit 7] STOP (STOP mode)

This bit specifies entry into stop mode. If 1 is written to both Bit 6 (SLEEP bit) and this bit, this bit (STOP) has precedence and the device enters stop mode

0	Stop mode not entered (initial value)	
1	Stop mode entered	

- This bit is initialized to 0 by a reset (RST) and by a stop return source.
- This bit is readable and writable.

[Bit 6] SLEEP (SLEEP mode)

This bit specifies entry into stop mode. If 1 is written to both Bit 6 (SLEEP bit) and this bit, this bit (STOP) has precedence and the device enters stop mode.

0	Sleep mode not entered (initial value)	
1	Sleep mode entered	

- This bit is initialized to 0 by a reset (RST) and by a sleep return source.
- This bit is readable and writable.

[Bit 5] HIZ (HIZ mode)

This bit controls the pin state in stop mode.

0	The pin state before stop mode entered is maintained.	
1	Pin output is set to high-impedance state in stop mode (initial value).	

- This bit is initialized to 0 by a reset (INIT).
- This bit is readable and writable.

[Bit 4] SRST (Software ReSeT)

This bit specifies issuing of a software reset (RST).

0	A software reset is issued.
1	A software reset is not issued (initial value).

- This bit is initialized to 1 by a reset (RST).
- This bit is readable and writable. The read value is always 1.

[Bits 3, 2] OS1, OS0 (Oscillation Stabilization time select)

These bits set the oscillation stabilization wait time used after a reset (INIT), return from stop mode, etc.

The values written to these bits determine the interval of the watchdog timer, which can be selected from the four types shown in Table 3.12-2 "Oscillation Stabilization Wait Settings".

CS1	CS0	Oscillation stabilization wait time	If the source oscillation is 17 MHz
0	0	$\phi \ge 2^1$ (initial value)	0.238 [μs]
0	1	φ x 2 ¹¹	240.9 [μs]
1	0	φ x 2 ¹⁶	7.71 [ms]
1	1	φ x 2 ²²	493 [ms]

Table 3.12-2 Oscillation Stabilization Wait Settings

• These bits are initialized to 00 by a reset (INIT) generated due to INIT pin input. If both resets (INIT) generated due to INIT and HST pin input are valid, these bits are initialized to 11.

• These bits are readable and writable.

[Bit 1] Reserved bit

- This bit is initialized to 1 by a reset (INIT).
- This bit is readable and writable.

Note:

This function is not supported by the MB91301 series.

[Bit 0] OSCD1 (OSCillation Disable mode for XIN1)

This bit controls stopping of main oscillation input (XIN1) in stop mode.

0	Main oscillation does not stop in stop mode.
1	Main oscillation stops in stop mode (initial value).

- This bit is initialized to 1 by a reset (INIT).
- This bit is readable and writable.

Notes:

 Use the following sequences after using the same period standby mode (TBCR:Set by time base counter control register bit8 SYNCS bit) when putting in the standby mode.

```
(LDI #value_of_standby, R0)
(LDI #_STCR, R12)
STB R0, @12) // Writing in standby control register (STCR)
LDUB @R12, R0 // STCR lead for synchronous standby
LDUB @R12, R0 // Dummy re - lead of STCR
NOP // five NOPs for timing adjustment
NOP
NOP
NOP
NOP
```

In addition, please set I flag, ILM, and ICR to diverge to the interruption handler that is the return factor after the standby returns.

- Do not do the following when the monitor debugger is used.
 - Set the break point to the above mentioned instruction row.
 - Execute the step for the above mentioned instruction row.

Time Base Counter Control Register (TBCR)

Figure 3.12-4 "Configuration of Time Base Counter Control Register (TBCR) Bits" shows the configuration of the time base counter control register (TBCR) bits.

Figure 3.12-4 Configuration of Time Base Counter Control Register (TBCR) Bits

bit	15	14	13	12	11	10	9	8
Address: 00000482 _H	TBIF	TBIE	TBC2	TBC1	TBC0	-	SYNCR	SYNCS
Initial value (INIT)	0	0	х	х	х	х	0	0
Initial value (RST)	0	0	х	х	х	х	Х	Х
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

The time base counter control register (TBCR) controls time base timer interrupts, among other things.

This register enables time base timer interrupts, selects an interrupt interval time, and sets an optional function for the reset operation.

The following describes the functions of the time base counter control register (TBCR) bits.

[Bit 15] TBIF (TimeBasetimer Interrupt Flag)

This bit is the time base timer interrupt flag. It indicates that the interval time (TBC2-0 bits, which are Bits 13-11) specified by the time base counter has elapsed.

A time base timer interrupt request is generated if this bit is set to 1 when interrupts are enabled by Bit 14 (TBIE bit, TBIE=1).

Clear source	An instruction writes 0.
Set source	The specified interval time elapses (the trailing edge of the time base counter is detected).

- This bit is initialized to 0 by a reset (RST).
- This bit is readable and writable, although only 0 can be written to it. Writing 1 does not

change the bit value. The value read by a read modify write instruction is always 1.

[Bit 14] TBIE (TimeBasetimer Interrupt Enable)

This bit is the time base timer interrupt request output enable bit.

It controls output of an interrupt request when the interval time of the time base counter has elapsed. A time base timer interrupt request is generated if the TBIF bit is set to 1 when this bit is set to 1.

0	Time base timer interrupt request output disabled (initial value)
1	Time base timer interrupt request output enabled

- This bit is initialized to 1 by a reset (RST).
- This bit is readable and writable.

[Bits 13 to 11] TBC2, TBC1, TBC0 (TimeBasetimer Counting time select)

These bits set the interval time of the time base counter that is used for the time base timer.

The values written to these bits determine the interval time, which can be selected from the eight types shown in Table 3.12-3 "Interval Settings".

TBC2	TBC1	твс0	Timer interval time	If the source oscillation is 17 MHz and PLL is multiplied by 4
0	0	0	φ x 2 ¹¹	30.1 [μs]
0	0	1	φ x 2 ¹²	60.2 [μs]
0	1	0	φ x 2 ¹³	120.5 [μs]
0	1	1	φ x 2 ²²	61.7 [ms]
1	0	0	φ x 2 ²³	123.4 [ms]
1	0	1	φ x 2 ²⁴	246.7 [ms]
1	1	0	φ x 2 ²⁵	493.4 [ms]
1	1	1	φ x 2 ²⁶	986.9 [ms]

Table 3.12-3 Interval Settings

- The initial value is undefined. Be sure to set a value before enabling an interrupt.
- These bits are readable and writable.

[Bit 10] (reserved bit)

This bit is reserved. The read value is undefined. Writing to this bit has no effect on operation.

[Bit 9] SYNCR (SYNChronous Reset enable)

This bit is the synchronous reset enable bit.

It is used to select one of the following operations, which is to be used if an operation initialization reset (RST) request or a hardware standby request occurs: (1) Immediately performing a reset (RST) or a normal reset operation followed by transition to hardware standby or (2) performing an operation initialization reset (RST) or a synchronous reset

operation followed by transition to hardware standby after all bus access have stopped.

0	Normal reset operation (initial value)				
1	Synchronous reset operation				

- This bit is initialized to 0 by a reset (INIT).
- This bit is readable and writable.

[Bit 8] SYNCS (SYNChronous Standby enable)

This bit is the synchronous standby enable bit.

It is used to select one of the following operations, which is to be used if an standby request (either sleep or stop mode request) occurs: (1) Performing a normal standby operation only by writing to the control bit in the STCR register or (2) performing a synchronous standby operation by reading the STCR register after writing to the control bit in the STCR register.

0	Normal standby operation (initial value)			
1	Synchronous standby operation			

- This bit is initialized to 0 by a reset (INIT).
- This bit is readable and writable.

■ Time Base Counter Clear Register (CTBR)

Figure 3.12-5 "Configuration of Time Base Counter Clear Register (CTBR) Bits" shows the configuration of the time base counter clear register (CTBR) bits.

Figure 3.12-5 Configuration of Time Base Counter Clear Register (CTBR) Bits

bit	7	6	5	4	3	2	1	0
Address: 00000483 _H	D7	D6	D5	D4	D3	D2	D1	D0
Initial value (INIT)	Х	Х	Х	х	Х	Х	Х	х
Initial value (RST)	х	х	х	х	Х	Х	Х	Х
	W	W	W	W	W	W	W	W

The time base counter clear register (CTBR) initializes the time base counter.

If $\{A5_H\}$ and $\{5A_H\}$ are written successively to this register, all the bits in the time base counter are cleared to 0 as soon as $\{5A_H\}$ is written. There is no time limit between writing of $\{A5_H\}$ and $\{5A_H\}$. However, if data other than $\{5A_H\}$ is written after $\{A5_H\}$ is written, $\{A5_H\}$ must be written again before $\{5A_H\}$ is written. Otherwise, a clear operation will not occur.

The value read from this register is undefined.

Note:

If the time base counter is cleared using this register, the oscillation stabilization wait interval, watchdog timer interval, and time base timer interval temporarily vary.

Clock Source Control Register (CLKR)

Figure 3.12-6 "Configuration of Clock Source Control Register (CLKR) Bits" shows the configuration of the clock source control register (CLKR) bits.

Figure 3.12-6 Configuration of Clock Source Control Register (CLKR) Bits

bit	15	14	13	12	11	10	9	8
Address: 00000484 _H	-	PLL1S2	PLL1S1	PLL1S0	-	PLL1EN	CLKS1	CLKS0
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value (INIT)	0	0	0	0	0	0	0	0
Initial value (RST)	Х	Х	х	Х	х	х	Х	Х

The clock source control register (CLKR) is used to select the clock source that will be used as the base clock of the system and controls the PLL. Use this register to select one of three clock sources (the MB91301 series supports only two of these). This register also enables the main PLL and each of the sub-PLLs and selects the multiply-by rate for them.

The following describes the functions of the clock source control register (CLKR) bits.

[Bit 15] Reserved bit

[Bits 14 to 12] PLL1S2, PLL1S1, PLL1S0 (PLL1 ratio Select 2 to 0)

These bits are the multiply-by selection bits for the main PLL. Select one of the eight multiply-by rates (the MB91301 series supports only four of these) shown in Table 3.12-4 "Main PLL Multiply-By Rate Settings".

Rewriting of these bits is disabled while the main PLL is selected as the clock source.

PLL1S2	PLL1S1	PLL1S0	Main PLL multiply-by rate	If the source oscillation is 17 MHz
0	0	0	x 1 (equal)	*
0	0	1	x 2 (multiplied by 2)	*
0	1	0	x 3 (multiplied by 3)	φ=19.6[ns](51.0MHz])
0	1	1	x 4 (multiplied by 4)	φ=14.7[ns](68.0[MHz])
1	0	0	x 5 (multiplied by 5)	*
1	0	1	x 6 (multiplied by 6)	Do not make a setting
1	1	0	x 7 (multiplied by 7)	Do not make a setting
1	1	1	x 8 (multiplied by 8)	Do not make a setting

Table 3.12-4 Main PLL Multiply-By Rate Settings

φ: Frequency of the system base clock

* : Not supported by the MB91301 series.

- These bits are initialized to 000 by a reset (INIT).
- These bits are readable and writable.

Note:

The upper-limit frequency for operation is 68 MHz. Do not make a setting exceeding this frequency.

[Bit 11] Reserved bit

[Bit 10] PLL1EN (PLL1 ENable)

This bit is the enable bit of the main PLL.

Rewriting of this bit is disabled while the main PLL is selected as the clock source.

Selection of the main PLL as the clock source is disabled while this bit is set to 0 (because of the setting of Bits 9 and 8, which are the CLKS1 and CLK0 bits).

The main PLL stops in stop mode even when this bit is set to 1 as long as the STCR bit (OSCD2 bit) is set to 1. After the device returns from stop mode, the main PLL is enabled again.

0	Main PLL stopped (initial value)				
1	Main PLL enabled				

- This bit is initialized to 0 by a reset (INIT).
- This bit is readable and writable.

[Bits 9, 8] CLKS1, CLKS0 (CLocK source Select)

These bits set the clock source that will be used by the MB91301 series.

The values written to these bits determine the clock source, which can be selected from the three types shown in Table 3.12-5 "Clock Source Settings" (the MB91301 series supports only two of these).

Table 3.12-5 Clock Source Settings

CLKS1	CLKS0	Clock source setting
0	0	Source oscillation input from X0/X1 divided by 2 (initial value)
0	1	Source oscillation input from X0/X1 divided by 2
1	0	Main PLL
1	1	Do not make a setting

Table 3.12-6 "Combinations of CLKS1 and CLKS0 Bits that Can and Cannot Be Changed" shows the combinations of the CLKS1 and CLKS0 bits that cannot be changed and those that can.

Cannot be changed	Can be changed
"00"> "11"	"00"> "01" or "10"
"01"> "10"	"01"> "11" or "00"
"10"> "01" or "11"	"10"> "00"
"11"> "00" or "10"	"11"> "01"

The value of Bit 8 (CLKS0) cannot be changed while Bit 9 (CLKS1) is set to 1. To select the sub-PLL in the post-INIT state, first write 01 and then write 11. (The setting 11 is not supported by the MB91301 series.)

- These bits are initialized to 00 by a reset (INIT).
- These bits are readable and writable.

Watchdog Reset Postpone Register (WPR)

Figure 3.12-7 "Configuration of Watchdog Reset Postpone Register(WPR) Bits" shows the configuration of the watchdog reset postpone register (WPR) bits.

Figure 3.12-7 Configuration of Watchdog Reset Postpone Register(WPR) Bits

bit	7	6	5	4	3	2	1	0
Address: 00000485 _H	D7	D6	D5	D4	D3	D2	D1	D0
	W	W	W	W	W	W	W	W
Initial value (INIT)	х	х	х	х	х	х	х	х
Initial value (RST)	х	Х	х	х	х	х	х	Х

The watchdog reset postpone register (WPR) postpones a watchdog reset. If $\{A5_H\}$ and $\{5A_H\}$ are written successively to this register, the detection FF for the watchdog timer is cleared immediately after $\{5A_H\}$ is written and the watchdog reset is postponed. There is no time limit between writing of $\{A5_H\}$ and $\{5A_H\}$. However, if data other than $\{5A_H\}$ is written after $\{A5_H\}$ is written again before $\{5A_H\}$ is written. Otherwise, a clear operation will not occur. Also, a watchdog reset is generated unless writing of these data items is completed within the time shown in Table 3.12-7 "Settings for Generation of a Watchdog Reset".

The setting varies as shown in Table 3.12-7 "Settings for Generation of a Watchdog Reset" depending on the state of Bit 9 (WT1) and Bit 8 (WT0) of the RSRR register.

Table 3.12-7 Settings for Generation of a Watchdog Reset

WT1	WT0	Required minimum interval of writing to the WPR of the RSRR to suppress the generation of a watchdog reset	Time elapsing between writing of the last 5AH to the WPR and the generation a watchdog reset
0	0	$\phi \ge 2^{16}$ (initial value)	φx 2 ¹⁶ to φ x 2 ¹⁷
0	1	φ x 2 ¹⁸	φx 2 ¹⁸ to φ x 2 ¹⁹
1	0	φ x 2 ²⁰	$\phi x 2^{20} to \phi x 2^{21}$
1	1	φ x 2 ²²	$\phi x 2^{22}$ to $\phi x 2^{23}$

Note: ϕ is the frequency of the system base clock. WT1 and WT0 are Bits 9 and 8 of the RSRR and are used to set the watchdog timer interval.

A watchdog reset is not postponed when an external bus hold request (BRQ) has been accepted. To hold the external bus for a long time, enter sleep mode and then input a hold request (BRQ).

The value read from this register is undefined.

Base Clock Division Setting Register 0 (DIVR0)

Figure 3.12-8 "Configuration of Base Clock Division Setting Register 0 (DIVR0) Bits" shows the configuration of the Base Clock Division Setting Register 0 (DIVR0) bits.

bit	15	14	13	12	11	10	9	8
Address: 00000486 _H	B3	B2	B1	B0	P3	P2	P1	P0
	R/W							
Initial value (INIT)	0	0	0	0	0	0	1	1
Initial value (RST)	Х	х	х	х	х	Х	х	Х

Figure 3.12-8 Configuration of Base Clock Division Setting Register 0 (DIVR0) Bits

Base Clock Division Setting Register 0 (DIVR0) controls the divide-by rate of an internal clock in relation to the base clock. This register sets the divide-by rates of the CPU clock, the clocks of an internal bus (CLKB) and a peripheral circuit, and the peripheral bus clock (CLKP).

An upper-limit frequency for the operation is set for each clock. If you set a combination of source clock, PLL multiply-by rate setting, and divide-by rate setting that results in a frequency exceeding this upper-limit frequency, operation is not guaranteed. Be extra careful of the order in which you change settings to select the source clock and to configure the associated setting items.

If the setting in this register is changed, the new divide-by rate takes effect for the clock rate following the one in which the setting was made.

[Bits 15 to 8] B3, B2, B1, B0 (clkB divide select 3 to 0)

These bits are the clock divide-by rate setting bits of the CPU clock (CLKB). Set the clock divide-by rate of the CPU, internal memory, and internal bus clock (CLKB). The values written to these bits determine the divide-by rate (clock frequency) of the CPU and internal bus clock in relation to the base clock, which can be selected from the 16 types shown in Table 3.12-8 "Clock Divide-By Rate (CPU Clock) Settings".

The upper-limit frequency for operation is 68 MHz. Do not set a divide-by rate that results in a frequency exceeding this limit.

B3	B2	B1	В0	Clock divide-by rate	Clock frequency: if the source oscillation is 17 [MHz] and the PLL is multiplied by 4
0	0	0	0	φ	68 [MHz] (initial value)
0	0	0	1	φ x 2 (divided by 2)	34 [MHz]
0	0	1	0	φ x 3 (divided by 3)	22.7 [MHz]
0	0	1	1	φ x 4 (divided by 4)	17 [MHz]
0	1	0	0	ϕ x 5 (divided by 5)	13.6 [MHz]
0	1	0	1	ϕ x 6 (divided by 6)	11.3 [MHz]
0	1	1	0	ϕ x 7 (divided by 7)	9.71 [MHz]
0	1	1	1	φ x 8 (divided by 8)	8.5 [MHz]
1	1	1	1	ϕ x 16 (divided by 16)	4.25 [MHz]

Table 3.12-8 Clock Divide-By Rate (CPU Clock) Settings

 $\boldsymbol{\varphi} {:}$ Frequency of the system base clock

- These bits are initialized to 0000 by a reset (INIT).
- These bits are readable and writable.

[Bits 11 to 8] P3, P2, P1, P0 (clkP divide select 3 to 0)

These bits are the clock divide-by rate setting bits of the peripheral clock (CLKP). Set the clock divide-by rate of the peripheral circuit and the peripheral bus clock (CLKP). The values written to these bits determine the divide-by rate (clock frequency) of the peripheral circuit and the peripheral bus clock in relation to the base clock, which can be selected from the 16 types shown in Table 3.12-9 "Clock Divide-by Rate (Peripheral Clock) Settings".

P3	P2	P1	P0	Clock divide-by rate	Clock frequency: if the source oscillation is 17 [MHz] and the PLL is multiplied by 4
0	0	0	0	φ	68 [MHz]
0	0	0	1	φ x 2 (divided by 2)	34 [MHz]
0	0	1	0	φ x 3 (divided by 3)	22.7 [MHz]
0	0	1	1	φ x 4 (divided by 4)	17 [MHz] (initial value)
0	1	0	0	ϕ x 5 (divided by 5)	13.6 [MHz]
0	1	0	1	φ x 6 (divided by 6)	11.3[MHz]
0	1	1	0	ϕ x 7 (divided by 7)	9.71 [MHz]
0	1	1	1	φ x 8 (divided by 8)	8.5 [MHz]
1	1	1	1	φ x 16 (divided by 16)	4.25 [MHz]

Table 3.12-9 Clock Divide-by Rate (Peripheral Clock) Settings

φ: Frequency of the system base clock

- These bits are initialized to 0011 by a reset (INIT).
- These bits are readable and writable.

Note:

The upper-limit frequency for operation is 34 MHz. Do not set a divide-by rate that results in a frequency exceeding this limit.

Base Clock Division Setting Register 1 (DIVR1)

Figure 3.12-9 "Configuration of Base Clock Division Setting Register 1 (DIVR1) Bits" shows the configuration of the Base Clock Division Setting Register 1 (DIVR1) bits.

Figure 3.12-9 Configuration of Base Clock Division Setting Register 1 (DIVR1) Bits

bit	7	6	5	4	3	2	1	0
Address: 00000487 _H	Т3	T2	T1	Т0	-	-	-	-
	R/W							
Initial value (INIT)	0	0	0	0	0	0	0	0
Initial value (RST)	Х	х	х	х	х	х	х	Х

Base Clock Division Setting Register 1 (DIVR1) controls the divide-by rate of an internal clock in relation to the base clock. This register sets the divide-by rates of the external extended bus interface clock (CLKT) and the SDRAM interface clock (CLKS). An upper-limit frequency for operation is set for each clock. If you set a combination of source clock, PLL multiply-by rate setting, and divide-by rate setting that results in a frequency exceeding this upper-limit frequency, operation is not guaranteed. Be extra careful of the order in which you change settings to select the source clock and to configure the associated setting items.

If the setting in this register is changed, the new divide-by rate takes effect for the clock rate following the one in which the setting was made.

[Bits 7-4] T3, T2, T1, T0 (clkT divide select 3-0)

These bits are the clock divide-by rate setting bits of the external bus clock (CLKT). Set the clock divide-by rate of the external extended bus interface clock (CLKT). The values written to these bits determine the divide-by rate (clock frequency) of the external extended bus interface clock in relation to the base clock, which can be selected from the 16 types shown in Table 3.12-10 "Clock Divide-By Rate (External Bus Clock) Settings".

Т3	T2	T1	ТО	Clock divide-by rate	Clock frequency: if the source oscillation is 16.5[MHz] and the PLL is multiplied by 4
0	0	0	0	φ	68 [MHz] * (initial value)
0	0	0	1	φ x 2 (divided by 2)	34 [MHz]
0	0	1	0	φ x 3 (divided by 3)	22.7 [MHz]
0	0	1	1	φ x 4 (divided by 4)	17 [MHz]
0	1	0	0	ϕ x 5 (divided by 5)	13.6 [MHz]
0	1	0	1	ϕ x 6 (divided by 6)	11.3 [MHz]
0	1	1	0	ϕ x 7 (divided by 7)	9.71 [MHz]
0	1	1	1	φ x 8 (divided by 8)	8.5 [MHz]
1	1	1	1	φ x 16 (divided by 16)	4.25 [MHz]

* : Disabled because 33 MHz is exceeded

- These bits are initialized to 0000 by a reset (INIT).
- These bits are readable and writable.

Note:

The upper-limit frequency for operation is 33 MHz. Do not set a divide-by rate that results in a frequency exceeding this limit.

[Bits 3-0] Reserved bit

3.12.7 Peripheral Circuits of Clock Controller

This section describes the peripheral circuit functions of the clock controller.

■ Time Base Counter

The clock controller has a 26-bit time base counter that runs on the system base clock.

The time base counter is used to measure the oscillation stabilization wait time in addition to having the uses listed below (For more information about the oscillation stabilization wait time, see Section 3.11.4 "Oscillation Stabilization Wait Time".)

Watchdog timer

The watchdog timer, which is used to detect a system runaway, measures time using the bit output of the time base counter.

Time base timer

The time base timer generates an interval interrupt using output from the time base counter.

The following describes these functions.

O Watchdog timer

The watchdog timer detects a runaway using output from the time base counter. If a program runaway results in a watchdog reset no longer being postponed for a specified interval, a settings initialization reset (INIT) request is generated as a watchdog reset.

[Startup and interval setting of the watchdog timer]

The watchdog timer is started when the reset source register and the watchdog timer control register (RSRR) are written to for the first time after a reset (RST). At this time, the interval time of the watchdog timer is set in Bits 09 and 08 (WT1 and WT0 bits). Only the time defined in this first write is valid as the interval time setting. Any further writing is ignored.

[Postponing a watchdog reset]

Once the watchdog timer is started, the program must write {A5H} and {5AH} in this order to the watchdog reset postpone register (WPR). This operation initializes the watchdog reset generation flag.

[Generation of a watchdog reset]

The watchdog reset generation flag is set at the trailing edge of the time base counter output of the specified interval. If the flag has already been set when a trailing edge is detected a second time, a settings initialization reset (INIT) request is generated as a watchdog reset.

[Stopping the watchdog timer]

The watchdog timer, once started, cannot be stopped until an operation initialization reset (RST) occurs.

In the following states, when an operation initialization reset (RST) occurs, the watchdog timer is stopped and remains inoperative until a program starts it.

- Operation initialization reset (RST) state
- Settings initialization reset (INIT) state
- Oscillation stabilization wait reset (RST) state
- Hardware standby state

[Suspending the watchdog timer (automatic postponement)]

If program operation stops on the CPU, the watchdog reset generation flag is initialized and generation of a watchdog reset is postponed. Stopping of program operation specifically refers to the following statuses:

- Sleep state
- Stop state
- Oscillation stabilization wait RUN state
- DMA transfer in progress on the instruction bus (I bus) or the data bus (D bus)
- During Data Access operation of cashe memory, or others to I-bus at Instruction cashe control register (ISIZE, ICHCR) or RAM Mode
- During fetching instructions to the D-bus of D-bus RAM, etc.
- · During breaking an emulator debugger and a monitor debugger in use
- Period of execution from INTE Instruction to RETI Instruction
- Step Trace Trap (the break by each I instruction caused by T Flag = 1 in the PS Register)

If the time base counter is cleared, the watchdog reset generation flag is initialized at the same time, postponing generation of a watchdog reset.

If system falls into the condition mentioned above because of system runaway, the warchedog reset cannot be executed. In that case, execute initialization reset (INIT) from external INIT pin.

Time Base Timer

The time base timer generates an interval using output from the time base counter. This timer is appropriate for measurements that require a relatively long time (for example, a maximum interval of {base clock x 227} cycles such as for the PLL lock wait time or a subclock.

If the trailing edge of the time base counter output for the specified interval is detected, a time base timer interrupt request is generated.

[Startup and interval settings of the time base timer]

For the time base timer, the interval time is set in Bits 13-11 (TBC2, TBC1, and TBC0 bits) of the time base counter control register (TBCR). The trailing edge of the time base counter output for the specified interval is always detected. Thus, after setting the interval time, clear Bit 15 (TBIF bit) and then set Bit 14 (TBIE bit) to 1 to enable output of an interrupt request.

Before changing the interval time, set Bit 14 (TBIE bit) to 0 to disable interrupt request output.

Since the time base counter always counts regardless of these settings, before enabling interrupts, clear the time base counter to obtain an accurate interval interrupt time. Otherwise, an interrupt request may be generated immediately after an interrupt is enabled.

[Clearing of the time base counter due to a program]

If $\{A5_H\}$ and $\{5A_H\}$ are written in this order to the time base counter clear register (CTBR), all bits of the time base counter are cleared to 0 immediately after $\{5A_H\}$ is written. There is no time limit between writing of $\{A5_H\}$ and $\{5A_H\}$. However, if data other than $\{5A_H\}$ is written after $\{A5_H\}$ is written, $\{A5_H\}$ must be written again before $\{5A_H\}$ is written. Otherwise, no clear operation occurs.

If the time base counter is cleared, the watchdog reset generation flag is initialized at the same time, postponing generation of a watchdog reset.

[Clearing of the time base counter due to the device state]

All bits of the time base counter are cleared to 0 at the same time if the device enters one of the following states:

- Stop state
- Settings initialization reset (INIT) state

Especially in the stop state, an interval interrupt of the time base timer may unintentionally be generated because the time base counter is used to measure the oscillation stabilization wait time. Before setting stop mode, therefore, disable time base timer interrupts to prevent the time base timer from being used.

In any other state, time base timer interrupts are automatically disabled because an operation initialization reset (RST) occurs.

3.13 Device State Control

This section describes the states of the FR family and their control. It also describes low-power mode.

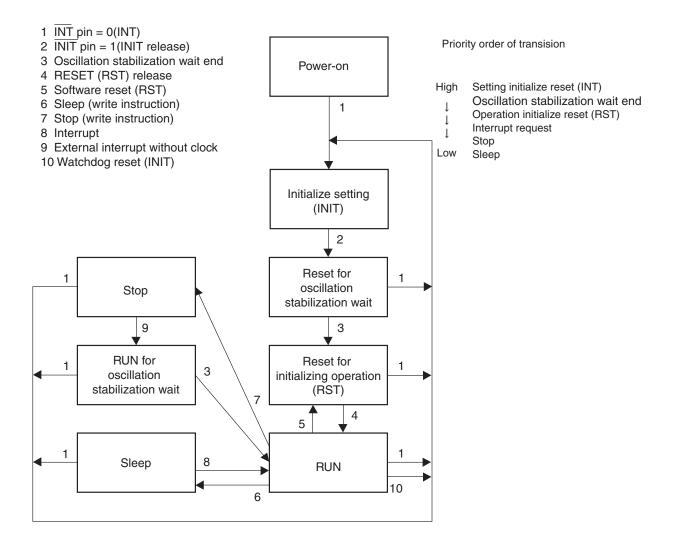
Device States

The FR family has the operating states listed below.

For more information about these states, see Section 3.13.1 "Device States and State Transitions".

- RUN state (normal operation)
- Sleep state
- Stop state
- Oscillation stabilization wait RUN state
- Oscillation stabilization wait reset (RST) state
- Operation initialization reset (RST) state
- Settings initialization reset (INIT) state

Low-power Modes


The following two low-power modes are provided.

For more information, see Section 3.13.2 "Low-power Mode".

- Sleep mode
- Stop mode

State of device and each transition

The following shows the device state transitions of this model.

3.13.1 Device States and State Transitions

This section describes device operating states and the transition between operating states.

RUN State (Normal Operation)

In the RUN state, a program is being executed. All internal clocks are supplied and all circuits are enabled.

For the 16-bit peripheral bus, however, only the bus clock is stopped, when it is not being accessed.

In this state, a state transition request is accepted. If synchronous reset mode is selected, however, state transition operations different from normal reset mode are used for some requests. For more information, see "Synchronous Reset Operation" in Section 3.11.5 "Reset Operation Modes".

Sleep State

In the sleep state, a program is stopped. Program operation causes a transition to this state.

Only execution of the program on the CPU is stopped; peripheral circuits are enabled. The instruction cache is stopped and the built-in memory modules and the internal and external buses are stopped unless the DMA controller issues a request.

- If a valid interrupt request occurs, the state is cleared and the RUN state (normal operation) is entered.
- If a settings initialization reset (INIT) request occurs, the settings initialization reset (INIT) state is entered.
- If an operation initialization reset (RST) request occurs, the operation initialization reset (RST) state is entered.
- If a hardware standby request occurs, the hardware standby state is entered.

Stop State

In the stop state, the device is stopped. Program operation causes a transition to this state.

All internal circuits are stopped. All internal clocks are stopped and the oscillation circuit and PLL can be stopped if set to do so.

In addition, the external pins (except some) can be set to high impedance via settings.

- If a specific valid interrupt request (no clock required) occurs, the oscillation stabilization wait RUN state is entered.
- If a settings initialization reset (INIT) request occurs, the settings initialization reset (INIT) state is entered.
- If an operation initialization reset (RST) request occurs, the oscillation stabilization wait reset (RST) state is entered.
- If a hardware standby request occurs, the hardware standby state is entered.

Oscillation Stabilization Wait RUN State

In the oscillation stabilization wait RUN state, the device is stopped. This state occurs after a

return from the stop state.

All internal circuits except the clock generation controller (time base counter and device state controller) are stopped. All internal clocks are stopped, but the oscillation circuit and the PLL that has been enabled are running.

- High impedance control of external pins in the stop or other state is cleared.
- If the specified oscillation stabilization wait time elapses, the RUN state (normal operation) is entered.
- If a settings initialization reset (INIT) request occurs, the settings initialization reset (INIT) state is entered.
- If an operation initialization reset (RST) request occurs, the oscillation stabilization wait reset (RST) state is entered.
- If a hardware standby request occurs, the hardware standby state is entered.

Oscillation Stabilization Wait Reset (RST) Status

In the oscillation stabilization wait reset (RST) state, the device is stopped. This state occurs after a return from the stop state or the settings initialization reset (INIT) state. All internal circuits except the clock generation controller (time base counter and device state controller) are stopped. All internal clocks are stopped, but the oscillation circuit and the PLL that has been enabled are running.

- High impedance control of external pins in the stop state, etc., is cleared.
- An operation initialization reset (RST) is output to the internal circuits.
- If the specified oscillation stabilization wait time elapses, the oscillation stabilization wait reset (RST) state is entered.
- If a settings initialization reset (INIT) request occurs, the settings initialization reset (INIT) state is entered.
- If a hardware standby request occurs, the hardware standby state is entered.

Operation Initialization Reset (RST) State

In the operation initialization reset (RST) state, a program is initialized. This state occurs if an operation initialization reset (RST) request is accepted or the oscillation stabilization wait reset (RST) state is ended.

Execution of a program on the CPU is stopped and the program counter is initialized. Most peripheral circuits are initialized. All internal clocks are stopped, but the oscillation circuit and the PLL that has been enabled are running.

- An operation initialization reset (RST) is output to the internal circuits.
- If an operation initialization reset (RST) no longer exists, the RUN state (normal operation) is
 entered and the operation initialization reset sequence is executed. After a return from the
 settings initialization reset (INIT), the settings initialization reset sequence is executed.
- If a settings initialization reset (INIT) request occurs, the settings initialization reset (INIT) state is entered.
- If a hardware standby request occurs, the hardware standby state is entered.

Settings Initialization Reset (INIT) State

In the settings initialization reset (INIT) state, all settings are initialized. This state occurs if a settings initialization reset (INIT) is accepted or the hardware standby state is ended.

Execution of a program on the CPU is stopped and the program counter is initialized. All peripheral circuits are initialized. The oscillation circuit runs, but the PLL stops running. All internal clocks are stopped while the Low level is input to the external INIT pin; otherwise, they run.

- A settings initialization reset (INIT) and an operation initialization reset (RST) are output to the internal circuits.
- If a settings initialization reset (INIT) no longer exists, the state is cleared and the oscillation stabilization wait reset (RST) state is entered. Then, the operation initialization reset (RST) state is entered and the settings initialization reset sequence is executed.

■ Priority of State Transition Requests

In any state, state transition requests conform to the priority listed below. However, some requests that occur only in a specific state are valid only in that state.

[Highest]	Settings initialization reset (INIT) request
	Hardware standby request
	End of oscillation stabilization wait time (occurs only in the oscillation stabilization wait reset state and the oscillation stabilization wait RUN state)
	Operation initialization reset (RST) request
*	Valid interrupt request (occurs only in the RUN, sleep, and stop states)
[Lowest]	Stop mode request (writing to a register) (occurs only in the RUN state)

3.13.2 Low-power Modes

This section describes the low-power modes, some MB91301 series states, and how to use the low-power modes.

Low-power Modes

The MB91301 series has the following low-power modes:

- Sleep mode: The device enters the sleep state due to writing to a register.
- Stop mode: The device enters the stop state due to writing to a register.

These modes are described below.

Sleep Mode

If 1 is set for Bit 6 (SLEEP bit) of the standby control register (STCR), sleep mode is initiated and the device enters the sleep state. The sleep state is maintained until a source for return from the sleep state is generated.

If 1 is set for both Bit 7 (STOP bit) and Bit 6 of the standby control register (STCR), Bit 7 (STOP bit) has precedence and the device enters the stop state.

For more information about the sleep state, see "Sleep State" in Section 3.13.1 "Device States and State Transitions".

O Circuits that stop in the sleep state

- Program execution on the CPU
- Instruction cache
- Data cache
- Bit search module (enabled if DMA transfer occurs)
- Various built-in memory (enabled if DMA transfer occurs)
- Internal types of and external buses (enabled if DMA transfer occurs)

O Circuits that do not stop in the sleep state

- Oscillation circuit
- PLL that has been enabled
- Clock generation controller
- Interrupt controller
- Peripheral circuit
- DMA controller

O Sources of return from the sleep state

Generation of a valid interrupt request

If an interrupt request with a higher level than defined in ILM of the CPU occurs, sleep mode is cleared and the RUN state (normal operation) is entered. If an interrupt request with a lower level than defined in ILM of the CPU occurs, sleep mode is not cleared.

Generation of a settings initialization reset (INIT) request

If a settings initialization reset (INIT) request occurs, the settings initialization reset (INIT) state is unconditionally entered.

Generation of a hardware standby request

If a hardware standby request occurs, the hardware standby state is unconditionally entered.

Generation of an operation initialization reset (RST)

If an operation initialization reset (RST) occurs, the operation initialization reset (RST) state is unconditionally entered.

For information about the priority of sources, see "Priority of State Transition Requests" in Section 3.13.1 "Device States and State Transitions".

O Normal and synchronous standby operations

If 1 is set for Bit 8 (SYNCS bit) of the time base counter control register (TBCR), synchronous standby operation is enabled. In this case, simply writing to the SLEEP bit does not cause a transition to the sleep state. Instead, writing to the SLEEP bit and then reading the STCR register causes a transition to the sleep state.

If 0 is set for the SYNCS bit, normal standby operation is selected. In this case, simply writing to the SLEEP bit causes a transition to the sleep state.

If, in normal standby operation, the value set for the divide-by rate of the peripheral clock (CLKP) is larger than the CPU clock (CLKB), many instructions are executed before writing to the SLEEP bit actually occurs. Thus, after the write instruction to the SLEEP bit, the same number of NOP instructions as {5 + (CPU clock divide-by rate/peripheral clock divide-by rate)} instructions or more must be inserted. Otherwise, subsequent instructions are executed before the transition to the sleep state.

In synchronous standby operation, the sleep state occurs only after writing to the SLEEP bit actually occurs and reading of the STCR register are completed. This is because the CPU uses the bus until the value read from the STCR register is stored in the CPU. Thus, in any setting of the relationship between the divide-by rates of the CPU clock (CLKB) and the peripheral clock (CLKP), insert only two NOP instructions after the write instruction for the SLEEP bit and the read instruction for the STCR register to prevent any subsequent instructions from being executed before transition to the sleep state.

Stop Mode

If 1 is set for Bit 7 (STOP bit) of the standby control register (STCR), stop mode is initiated and the device enters the stop state. The stop state is maintained until a source for return from the stop state occurs.

If 1 is set for both Bit 6 (SLEEP bit) and Bit 7 bit of the standby control register (STCR), Bit 7 (STOP bit) has precedence and the device enters the stop state.

For more information about the stop state, see "Stop State" in Section 3.13.1 "Device States and State Transitions".

O Circuits that stop in the stop state

Oscillation circuits set to stop

If 1 is set for Bit 1 (OSCD2 bit) of the standby control register (STCR), the subclock oscillation circuit in the stop state is stopped. If 1 is set for Bit 0 (OSCD1 bit) of the standby control register (STCR), the main clock oscillation circuit in the stop state is stopped.

• PLL connected to the oscillation circuit that is either disabled or set to stop

If 1 is set for Bit 1 (OSCD2 bit) of the standby control register (STCR) and 1 is set for Bit 11 (PLL2EN bit) of the clock source control register (CLKR), the subclock PLL in the stop state is stopped. If 1 is set for Bit 0 (OSCD1 bit) of the standby control register (STCR) and 1 is set for Bit 10 (PLL1EN bit) of the clock source control register (CLKR), the main clock PLL in the stop state is stopped.

• All internal circuits except those, described below, that do not stop in the stop state

O Circuits that do not stop in the stop state

- Oscillation circuits that are set not to stop
 - If 0 is set for Bit 1 (OSCD2 bit) of the standby control register (STCR), the subclock oscillation circuit in the stop state is not stopped. (The MB91301 series has no subclock.)
 - If 0 is set for Bit 0 (OSCD1 bit) of the standby control register (STCR), the main clock oscillation circuit in the stop state is not stopped.
- PLL connected to the oscillation circuit that is enabled and is not set to stop
 - If 0 is set for Bit 1 (OSCD2 bit) of the standby control register (STCR) and 1 is set for Bit 11 (PLL2EN bit) of the clock source control register (CLKR), the subclock PLL in the stop state is not stopped. (The MB91301 series has no subclock.)
 - If 0 is set for Bit 0 (OSCD1 bit) of the standby control register (STCR) and 1 is set for Bit 10 (PLL1EN bit) of the clock source control register (CLKR), the main clock PLL in the stop state is not stopped.

O High impedance control of a pin in the stop state

- If 1 is set for Bit 5 (HIZ bit) of the standby control register (STCR), the output of a pin in the stop state is set to the high impedance state. For information about pins subject to this control, see the appendix, "STATUS OF PINS IN THE CPU STATES."
- If 0 is set for Bit 5 (HIZ bit) of the standby control register (STCR), the output of a pin in the stop state maintains the value before transition to the stop state. For more information, see the appendix, "STATUS OF PINS IN THE CPU STATES."

O Sources of return from the stop state

• Generation of a specific valid interrupt request (no clock required)

The external interrupt input pins (INT0 to INT7 pins) are enabled. If an interrupt request with a higher level than defined in ILM of the CPU occurs, stop mode is cleared and the RUN state (normal operation) is entered. If an interrupt request with a lower level than defined in ILM of the CPU occurs, stop mode is not cleared.

· Generation of a settings initialization reset (INIT) request

If a settings initialization reset (INIT) request occurs, the settings initialization reset (INIT) is unconditionally entered.

· Generation of a hardware standby request

If a hardware standby request occurs, the hardware standby is unconditionally entered.

Generation of an operation initialization reset (RST)

If an operation initialization reset (RST) occurs, the operation initialization reset (RST) is unconditionally entered.

For information about the priority of sources, see "Priority of State Transition Requests" in Section 3.13.1 "Device States and State Transitions".

O Selecting a clock source in stop mode

In self-induced oscillation mode, select the main clock divided by 2 as the source clock before setting stop mode. For more information, see Section 3.12 "Clock Generation Control" especially Section 3.12.1 "PLL Control".

The same limitations as in the normal operation apply to the setting of a divide-by rate.

O Normal and synchronous standby operations

If 1 is set for Bit 8 (SYNCS bit) of the time base counter control register (TBCR), synchronous standby operation is enabled. In this case, simply writing to the STOP bit does not cause a transition to the stop state. Instead, writing to the STOP bit and then reading the STCR register causes a transition to the stop state. If 0 is set for the SYNCS bit, normal standby operation is selected. In this case, simply writing to the STOP bit causes a transition to the stop state.

If, in normal standby operation, the value set for the divide-by rate of the peripheral clock (CLKP) is larger than the CPU clock (CLKB), many instructions are executed before writing to the STOP bit actually occurs. Thus, after the write instruction to the STOP bit, the same number of NOP instructions as {5 + (CPU clock divide-by rate/peripheral clock divide-by rate)} instructions or more must be inserted. Otherwise, subsequent instructions are executed before the transition to the stop state.

In synchronous standby operation, the stop state occurs only after writing to the STOP bit actually occurs and the reading of STCR register are completed. This is because the CPU uses the bus until the value read from the STCR register is stored into the CPU. Thus, in any setting of relationship between divide-by rates of the CPU clock (CLKB) and the peripheral clock (CLKP), insert only two NOP instructions after the write instruction for the STOP bit and the read instruction for the STCR register to prevent any subsequent instructions from being executed before transition to the stop state.

3.14 Operating Modes

Two operating modes are provided: bus mode and access mode. This section describes these modes.

Operating Modes

 Bus mode
 Access mode

 External-ROM
 32-bit bus width

 External-bus
 32-bit bus width

 8-bit bus width
 8-bit bus width

O Bus mode

Bus mode refers to a mode in which the operations of internal ROM and the external access function are controlled. A bus mode is specified using the setting pins (MD2, 1, and 0) and the ROMA bit in the mode data.

O Access mode

An access mode is specified using the WTH1 and WTH0 bits in the mode register and the DBW1 and DBW0 bits in ACR0 to ACR7 (Area Configuration Register).

Bus Modes

The MB91301 series has the following two bus modes.

• Bus mode 0 (single chip mode) (MB91302A or MB91V301A only)

The internal I/O, 4KB DbusRAM, 32KB FbusRAM (FRAM), and 96KB FbusROM are valid, while access to any other areas is invalid under this mode.

The external pins serve as peripherals or general - purpose ports. The pin does not work as a bus pin.

• Bus Mode 1 (internal-RAM/external-bus mode)

In this mode, the access to the region where which built - in RAM 128KB ($0004000_H - 0005FFF_H$) into is effective. Access to an area that enables external access is handled as access to an external space. Some external pins serve as bus pins.

O Bus Mode 2 (external-ROM/external-bus mode)

In this mode, the access to built - in RAM 128KB (0004000_H - $0005FFF_H$) into is prohibited. All accesses are handled as access to an external space. Some external pins serve as bus pins.

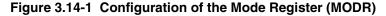
Mode Settings

For the MB91301 series, set the operating mode using the mode pins (MD2, 1, and 0) and the mode register (MODR).

○ Mode pins

Use the three mode pins (MD2, MD1, and MD0) to specify mode vector fetch and to set a test mode.

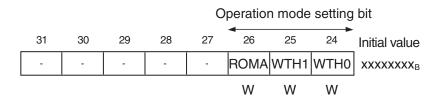
	Mode pin		Mode pin		Mode name	Reset vector	Remarks
MD2	MD1	MD0	Mode name	access area	nemaikə		
0	0	0	Internal ROM mode vector	Internal	Single chip mode *		
0	0	1	External ROM mode vector	External	Set the bus width using the mode register.		


Note that any setting other than those listed in the table is not allowed.

* : The single chip mode is available only to the MB91302A or MB91V301A.

• Mode register (MODR)

The mode register (MODR: MODe Register) determines the operating mode.


Figure 3.14-1 "Configuration of the Mode Register (MODR)" shows the configuration of the mode register (MODR).

This register automatically writes the 1-byte mode data placed at 000FFFF8_H by hardware during a reset sequence. The data can be read and written only by the tool programs.

Functions of Bits in the Mode Register (MODR)

The following explains the functions of the bits in the mode register (MODR).

[Bits 31-27] Reserved

These bits are reserved. Be sure to set them to 0. If you set the other value of 0, the operation is not guaranteed.

[Bit 26] ROMA (Internal ROM enable bit)

This bit sets whether to making built - in RAM region effective. Refer to " 3.1 memory space " when you effectively use built - in RAM region.

ROMA	Function	Remark			
0	External ROM mode *1	Built-in F-bus region (40000 _H to 100000_H) becomes an external region.			
1	Internal RAM mode	Built-in F-bus region (40000 _H to 100000 _H) becomes access prohibited. * ²			

*1: Internal ROM is only for MB91302A.

*2: EVA product has the built-in 8KB RAM. So the EVA product can be set. For details, see "Figure 3.1-1 ".

[Bits 25, 24] WTH1, WTH0 (Bus width specification bit)

These bits specify the bus width when the reset vector and the initial value of the DBW1, DBW0 bits of the ACR0 register are read.

Table 3.14-1 "Settings of the Initial Bus Width" shows the settings for the initial bus width.

Table 3.14-1 Settings of the Initial Bus Width

WTH1	WTH0	Bus width	Remarks
0	0	8 bits	External bus mode
0	1	16 bits	External bus mode
1	0	32 bits	External bus mode
1	1	Single chip mode	Only for MB91302A and MB91V301A

The setting of the WTH1, WHT0 bits is written to the DBW1, DBW0 bits of the ACR0 register during initialization.

Note:

The mode data for setting mode vector should be set at 0X000FFFF8H as byte data. FR family's byte endian uses BIg endian. Please set to the upper byte of bit31 to 24.

	Figure 3.14-	2 Note on mod	e data	
bit 31	24	23 16	15 8	7 0
False 0X000FFFF8 _H	xxxxxxx	xxxxxxx	xxxxxxx	Mode Data
bit 31	24	23 16	15 8	7 0
True 0X000FFFF8 _H	Mode Data	xxxxxxx	xxxxxxx	xxxxxxx
0X000FFFFC _H		Reset	Vector	

.

CHAPTER 4 EXTERNAL BUS INTERFACE

The external bus interface controller controls the interfaces with the internal bus for chips and with external memory and I/O devices.

This chapter explains each function of the external bus interface and its operation.

- 4.1 "Overview of the External Bus Interface"
- 4.2 "External Bus Interface Registers"
- 4.3 "Setting Example of the Chip Select Area"
- 4.4 "Endian and Bus Access"
- 4.5 "Operation of the Ordinary bus interface"
- 4.6 "Burst Access Operation"
- 4.7 "Address/data Multiplex Interface"
- 4.8 "Prefetch Operation"
- 4.9 "SDRAM/FCRAM Interface Operation"
- 4.10 "DMA Access Operation"
- 4.11 "Bus Arbitration"
- 4.12 "Procedure for Setting a Register"
- 4.13 "Notes on Using the External Bus Interface"

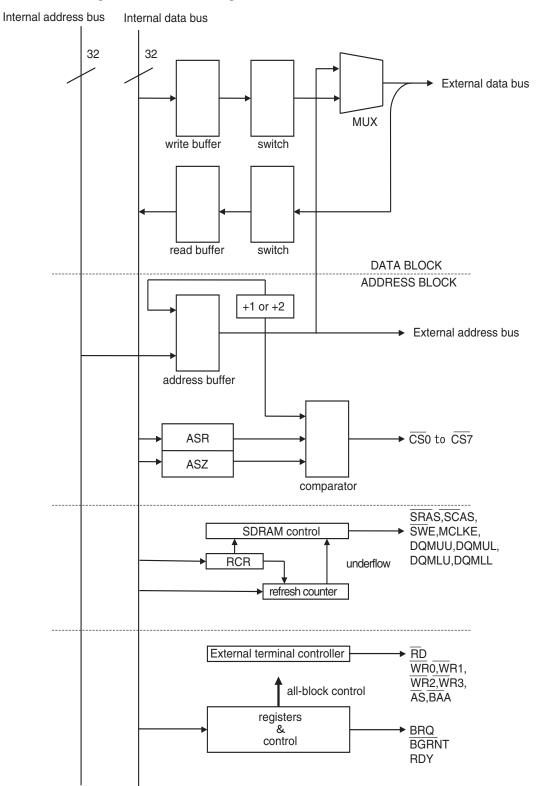
4.1 Overview of the External Bus Interface

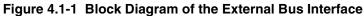
This section explains the features, block diagram, I/O pins, and registers of the external bus interface.

Features

The external bus interface has the following features:

- Addresses of up to 32 bits (4 GB space) can be output.
- Various kinds of external memory (8-bit/16-bit/32-bit modules) can be directly connected and multiple access timings can be mixed and controlled.
 - Asynchronous SRAM and asynchronous ROM/FLASH memory (multiple write strobe method or byte enable method)
 - Page mode ROM/FLASH memory (Page sizes 2, 4, and 8 can be used)
 - Burst mode ROM/FLASH memory (such as MBM29BL160D/161D/162D)
 - Address/data multiplex bus (8-bit/16-bit width only)
 - SDRAM (FCRAM modules are also supported, including two and four bank types with CAS latency 1 to 8)
 - Synchronous memory (such as ASIC built-in memory) (Synchronous SRAM cannot be directly connected)
- Eight independent banks (chip select areas) can be set, and chip select corresponding to each bank can be output.
 - The size of each area can be set in multiples of 64 KB (64 KB to 2 GB for each chip select area).
 - An area can be set at any location in the logical address space (Boundaries may be limited depending on the size of the area.)
- O In each chip select area, the following functions can be set independently:
 - Enabling and disabling of the chip select area (Disabled areas cannot be accessed)
 - · Setting of the access timing type to support various kinds of memory
 - Detailed access timing setting (individual setting of the access type such as the wait cycle)
 - Setting of the data bus width (8-bit/16-bit)
 - Setting of the order of bytes (big or little endian) (Only big endian can be set for the CS0 area)
 - Setting of write disable (read-only area)
 - Enabling and disabling of fetches from the built-in cache
 - Enabling and disabling of the prefetch function
 - Maximum burst length setting (1, 2, 4, 8)


O A different detailed timing can be set for each access timing type.


- For the same type of access timing, a different setting can be made in each chip select area.
- Auto-wait can be set to up to 15 cycles (asynchronous SRAM, ROM, Flash, and I/O area).
- The bus cycle can be extended by external RDY input (asynchronous SRAM, ROM, Flash, and I/O area).
- The first access wait and page wait can be set (burst, page mode, and ROM/FLASH area).
- Various kinds of idle/recovery cycles and setting delays can be inserted.
- Capable of setting timing values such as the CAS latency and RAS CAS delay (SDRAM area)
- Capable of controlling the distributed/centralized auto refresh, self refresh, and other refresh timings (SDRAM area)

○ Fly-by transfer by DMA can be performed.

- Transfer between memory and I/O can be performed in a single access operation.
- The memory wait cycle can be synchronized with the I/O wait cycle in fly-by transfer.
- The hold time can be secured by only extending transfer source access.
- Idle/recovery cycles specific to fly-by transfer can be set.
- O External bus arbitration using BRQ and BGRNT can be performed.
- Pins that are not used by the external interface can be used as general-purpose I/O ports through settings.

Block Diagram

■ I/O Pins

The I/O pins are external bus interface pins (Some pins have other uses). The following lists the I/O pins for each interface:

O Ordinary bus interface

- A31 to A00, D31 to D00 (AD15 to AD00)
- $\overline{\text{CS0}}, \overline{\text{CS1}}, \overline{\text{CS2}}, \overline{\text{CS3}}, \overline{\text{CS4}}, \overline{\text{CS5}}, \overline{\text{CS6}}, \overline{\text{CS7}}$
- AS, SYSCLK, MCLK
- RD
- WR, WR0(UUB), WR1(ULB), WR2(ULB), WR3(ULB)
- RDY, BRQ, BGRNT

O Memory interface

- MCLK, MCLKE
- MCLKI (for SDRAM)
- $\overline{\text{LBA}}(=\overline{\text{AS}})$, $\overline{\text{BAA}}$ (for burst ROM/FLASH)
- SRAS, SCAS, SWE (=WR) (for SDRAM)
- DQMUU,DQMUL,DQMLU,DQMLL (for SDRAM (=WR0, WR1, WR2, WR3))

O DMA interface

- IOWR, IORD
- DACK0, DACK1
- DREQ0, DREQ1
- DEOP0, DEOP1

Register List

Figure 4.1-2 "List of External Bus Interface Registers" shows the registers used by the external bus interface:

Address	<u>31 24</u>	4 23	16	15 08	3 07 00
00000640 _H	AS	SR0		A	CR0
00000644 _H	AS	SR1		A	CR1
00000648 _H	AS	SR2		AS	SR2
0000064c _H	AS	SR3		A	CR3
00000650 _H		SR4		A	CR4
00000654 _H		SR5			CR5
00000658 _H		SR6			CR6
0000065с _н		SR7			CR7
00000660 _H		NR0			WR1
00000664 _H		WR2			WR3
00000668 _H		WR4			WR5
0000066с _н				AWR7	
	A	NR6		A	//
00000670 _H	MCRA	MCRB		Reserved	Reserved
00000674 _H	Reserved	Reserved		Reserved	Reserved
00000678 _H	IOWR0	IOWR1		Reserved	Reserved
0000067c _H	Reserved	Reserved		Reserved	Reserved
00000680 _H	CSER	CHER		Reserved	TCR
00000684 _H	Reserved	Reserved		Reserved	Reserved
00000688 _H	Reserved	Reserved		Reserved	Reserved
0000068c _H	Reserved	Reserved		Reserved	Reserved
	Reserved	Reserved		Reserved	Reserved
000007f8 _H	Reserved	Reserved		Reserved	Reserved
000007fc _H	Reserved	(MODR)		Reserved	Reserved

Figure 4.1-2 List of External Bus Interface Registers

*1: Reserved indicates a reserved register. Be sure to set "0".

*2: MODR cannot be accessed from user programs.

4.2 External Bus Interface Registers

This section explains the registers used in the external bus interface.

Register Types

The following registers are used by the external bus interface:

- Area select registers (ASR0-7)
- Area configuration registers (ACR0-7)
- Area wait registers (AWR0-7)
- Memory configuration register (MCRA for SDRAM/FCRAM auto precharge OFF mode)
- Memory configuration register (MCRB for FCRAM auto precharge ON mode)
- I/O wait registers for DMAC (IOWR0-7)
- Chip select enable register (CSER)
- Cache enable register (CHER)
- Pin/timing control register (TCR)
- Mode register (MODR)

4.2.1 Area Select Registers 0-7(ASR0-7)

This section explains the configuration and functions of area select registers 0-7 (ASR0-7).

■ Configuration of area select registers 0-7 (ASR0-7)

The area select registers (ASR0-7: Area Select Registers 0-7) specify the start address of each chip select area of CS0-CS7.

Figure 4.2-1 "Configuration of the Area Select Registers (ASR0-7)" shows the configuration of area select registers 0-7 (ASR0-7: Area Select Register).

									Initial value	
ASR0	15	14	13	12		2	1	0	INIT RST	Access
00000640 _H	A31	A30	A29		• • •	A18	A17	A16	0000 _H 0000 _H	W/R
I									1	
ASR1	15	14	13	12		2	1	0	1	
00000644_{H}	A31	A30	A29		• • •	A18	A17	A16	$\mathbf{X}\mathbf{X}\mathbf{X}\mathbf{X}_{H}$ $\mathbf{X}\mathbf{X}\mathbf{X}_{H}$	W/R
L									1	
ASR2	15	14	13	12		2	1	0	1	
00000648 _H	A31	A30	A29		• • •	A18	A17	A16	$\mathbf{X}\mathbf{X}\mathbf{X}\mathbf{X}_{H}$ $\mathbf{X}\mathbf{X}\mathbf{X}_{H}$	W/R
Ľ									1	
ASR3	15	14	13	12		2	1	0	1	
0000064C _н	A31	A30	A29		• • •	A18	A17	A16	$\mathbf{X}\mathbf{X}\mathbf{X}\mathbf{X}_{H}$ $\mathbf{X}\mathbf{X}\mathbf{X}_{H}$	W/R
•										
ASR4	15	14	13	12		2	1	0	1	
00000650 _н	A31	A30	A29		• • •	A18	A17	A16	$\mathbf{X}\mathbf{X}\mathbf{X}\mathbf{X}_{H}$ $\mathbf{X}\mathbf{X}\mathbf{X}_{H}$	W/R
ľ									1	
ASR5	15	14	13	12		2	1	0	1	
00000654 _н	A31	A30	A29		• • •	A18	A17	A16	$\mathbf{X}\mathbf{X}\mathbf{X}\mathbf{X}_{H}$ $\mathbf{X}\mathbf{X}\mathbf{X}_{H}$	W/R
•										
ASR6	15	14	13	12		2	1	0	1	
00000658 _H	A31	A30	A29	•••	•••	A18	A17	A16	$\mathbf{X}\mathbf{X}\mathbf{X}\mathbf{X}_{H}$ $\mathbf{X}\mathbf{X}\mathbf{X}_{H}$	W/R
•		•								
ASR7	15	14	13	12		2	1	0	1	
0000065C _н	A31	A30	A29	•••	•••	A18	A17	A16	$\mathbf{X}\mathbf{X}\mathbf{X}\mathbf{X}_{H}$ $\mathbf{X}\mathbf{X}\mathbf{X}_{H}$	W/R
1		•	•						-	

Figure 4.2-1 Configuration of the Area Select Registers (ASR0-7)

■ Functions of Bits in the Area Select Registers (ASR0-7)

The start address can be set in the high-order 16 bits (bits A31-A16). Each chip select area starts with the address set in this register and covers the range set by the four bits ASZ3-0 of the ASR0-7 registers.

The boundary of each chip select area obeys the setting of the four bits ASZ3-0 of the ACR0-7 registers. For example, if an area of 1 MB is set by the four bits ASZ3-0, the low-order four bits of the ASR0-7 registers are ignored and only bits A31-20 are valid.

The ASR0 register is initialized to 0000_{H} by INIT and RST. ASR1-7 are not initialized by INIT and RST, and are therefore undefined. After starting chip operation, be sure to set the corresponding ASR register before enabling each chip select area with the CSER register.

4.2.2 Area Configuration Registers 0-7 (ACR0-7)

This section explains the configuration and functions of area configuration registers 0-7 (ACR0-7).

■ Configuration of Area Configuration Registers 0-7 (ACR0-7)

The area configuration registers 0-7 (ACR0-7: FArea Configuration Register 0-7) set the function of each chip select area.

Figure 4.2-2 "Configuration of Area Configuration Registers 0-7 (ACR0-7)" shows the configuration of area configuration registers 0-7 (ACR0-7).

Figure 4.2-2 Configuration of Area Configuration Registers 0-7 (ACR0-7) (Continued on next page)

									Initial v	value	
ACR0H	15	14	13	12	11	10	9	8	INIT	RST	Access
00000642_{H}	ASZ3	ASZ2	ASZ1	ASZ0	DBW1	DBW0	BST1	BST0	1111**00 _B	1111**00 _B	W/R
			_	4							
ACR0L	7	6	5	4	3	2	1	0			
00000643 _Н	SREN	PFEN	WREN	0	TYP3	TYP2	TYP1	TYP0	0000000 _B	00000000 _E	3 W/R
ACR1H	15	14	13	12	11	10	9	8			
00000646 _н	ASZ3	ASZ2	ASZ1	ASZ0	DBW1	DBW0	BST1	BST0	Xxxxxxx _B	XXXXXXX	W/R
		-	_		-	_					
ACR1L	7	6	5	4	3	2	1	0			
00000647 _н	SREN	PFEN	WREN	LEND	TYP3	TYP2	TYP1	TYP0	XXXXXXXAB	Xxxxxxx _B	W/R
ACR2H	15	14	13	12	11	10	9	8			
0000064A _H	ASZ3	ASZ2	ASZ1	ASZ0	DBW1	DBW0	BST1	BST0	XXXXXXXXB	XXXXXXXXB	W/R
ACR2L	7	6	5	4	3	2	1	0	l		
$0000064B_{H}$	SREN	PFEN	WREN	LEND	TYP3	TYP2	TYP1	TYP0	XXXXXXXAB	XXXXXXXXB	W/R
ACR3H	15	14	13	12	11	10	9	8			
0000064E _н	ASZ3	ASZ2	ASZ1	ASZ0	DBW1	DBW0	BST1	BST0	XXXXXXXXB	XXXXXXXXB	W/R
		·		·					l		
ACR3L	7	6	5	4	3	2	1	0			
$0000064F_{H}$	SREN	PFEN	WREN	LEND	TYP3	TYP2	TYP1	TYP0	Xxxxxxx _B	XXXXXXXXB	W/R

CHAPTER 4 EXTERNAL BUS INTERFACE

									Initial va	alue	
ACR4H	15	14	13	12	11	10	9	8	INIT	RST	Access
00000652 _н	ASZ3	ASZ2	ASZ1	ASZ0	DBW1	DBW0	BST1	BST0	$\mathbf{XXXXXXX}_{B}$	$\mathbf{X}\mathbf{X}\mathbf{X}\mathbf{X}\mathbf{X}\mathbf{X}\mathbf{X}_{B}$	W/R
	L										
ACR4L	7	6	5	4	3	2	1	0			
00000653 _н	SREN	PFEN	WREN	LEND	TYP3	TYP2	TYP1	TYP0	$\mathbf{X}\mathbf{X}\mathbf{X}\mathbf{X}\mathbf{X}\mathbf{X}\mathbf{X}_{B}$	$\mathbf{XXXXXXX}_{B}$	W/R
ACR5H	15	14	13	12	11	10	9	8			
00000656 _н	ASZ3	ASZ2	ASZ1	ASZ0	DBW1	DBW0	BST1	BST0	$\mathbf{XXXXXXX}_{B}$	$\mathbf{XXXXXXX}_{B}$	W/R
			•		•						
ACR5L	7	6	5	4	3	2	1	0			
00000657 _н	SREN	PFEN	WREN	LEND	TYP3	TYP2	TYP1	TYP0	$\mathbf{XXXXXXX}_{B}$	$\mathbf{XXXXXXX}_{B}$	W/R
ACR6H	15	14	13	12	11	10	9	8			
0000065A _H	ASZ3	ASZ2	ASZ1	ASZ0	DBW1	DBW0	BST1	BST0	$\mathbf{XXXXXXX}_{B}$	$\mathbf{XXXXXXX}_{B}$	W/R
			•		•						
ACR6L	7	6	5	4	3	2	1	0			
0000065B _н	SREN	PFEN	WREN	LEND	TYP3	TYP2	TYP1	TYP0	$\mathbf{XXXXXXX}_{B}$	$\mathbf{XXXXXXX}_{B}$	W/R
							_				
ACR7H	15	14	13	12	11	10	9	8			
$0000065E_{H}$	ASZ3	ASZ2	ASZ1	ASZ0	DBW1	DBW0	BST1	BST0	$\mathbf{XXXXXXX}_{B}$	$\mathbf{XXXXXXX}_{B}$	W/R
		_	_			_					
ACR7L	7	6	5	4	3	2	1	0			
$0000065F_{H}$	SREN	PFEN	WREN	LEND	TYP3	TYP2	TYP1	TYP0	$\mathbf{XXXXXXX}_{B}$	$\mathbf{XXXXXXX}_{B}$	W/R

The following explains the function of each bit:

[Bits 15-12] ASZ3-0 (Area Size Bits 3-0)

These bits set the area size. Table 4.2-1 "Area Size Settings" shows their settings.

Table 4.2-1 Area Size Settings

ASZ3	ASZ2	ASZ1	ASZ0	Size of each chip select area
0	0	0	0	64 KB (00010000 _H byte, ASR A[31:16] bits are valid)
0	0	0	1	128 KB (00020000 _H byte, ASR A[31:17] bits are valid)
0	0	1	0	256 KB (00040000 _H byte, ASR A[31:18] bits are valid)
0	0	1	1	512 KB (00080000 _H byte, ASR A[31:19] bits are valid)
0	1	0	0	1 MB (00100000 _H byte, ASR A[31:20] bits are valid)
0	1	0	1	2 MB (00200000 _H byte, ASR A[31:21] bits are valid)
0	1	1	0	4 MB (00400000 _H byte, ASR A[31:22] bits are valid)
0	1	1	1	8 MB (00800000 _H byte, ASR A[31:23] bits are valid)
1	0	0	0	16 MB (01000000 _H byte, ASR A[31:24] bits are valid)

Table 4.2-1	Area Size	Settings
-------------	-----------	----------

ASZ3	ASZ2	ASZ1	ASZ0	Size of each chip select area
1	0	0	1	32 MB (02000000 _H byte, ASR A[31:25] bits are valid)
1	0	1	0	64 MB (04000000 _H byte, ASR A[31:26] bits are valid)
1	0	1	1	128 MB (08000000 _H byte, ASR A[31:27] bits are valid)
1	1	0	0	256 MB (10000000 _H byte, ASR A[31:28] bits are valid)
1	1	0	1	512 MB (20000000 _H byte, ASR A[31:29] bits are valid)
1	1	1	0	1024 MB (40000000 _H byte, ASR A[31:30] bits are valid)
1	1	1	1	2048 MB (80000000 _H byte, ASR A[31] bit is valid)

ASZ3-0 are used to set the size of each area by modifying the number of bits for address comparison to a value different from ASR. Thus, an ASR contains bits that are not compared. Bits ASZ3-0 of ACR0 are initialized to $1111_B (0F_H)$ by RST. Despite this setting, however, the CS0 area just after RST is executed is specially set from 00000000_H to FFFFFFF_H (setting of entire area). The entire-area setting is reset after the first write to ACR0 and an appropriate size is set as indicated in Table 4.2-1 "Area Size Settings".

[Bits 11-10] DBW1-0 (Data Bus Width 1-0)

These bits set the data bus width of each chip select area as indicated in Table 4.2-2 "Setting of the Data Bus Width of Each Chip Select Area":

Table 4.2-2	Setting of the Data I	Bus Width of Each Chi	p Select Area
-------------	-----------------------	-----------------------	---------------

DBW1	DBW0	Data bus width	
0	0	8 bits (byte access)	
0	1	16 bits (halfword access)	
1	0	32 bits (word access)	
1	1	Reserved Setting disabled	

The same values as those of the WTH bits of the mode vector are written automatically to bits DBW1-0 of ACR0 during the reset sequence.

[Bits 9-8] BST1-0 (Burst Size 1-0)

These bits set the maximum burst length of each chip select area as indicated in Table 4.2-3 "Setting of the Maximum Burst Length of Each Chip Select".

Table 4.2-3	Setting of the Maximum	Burst Length of Each	Chip Select
-------------	------------------------	----------------------	-------------

BST1	BST0	Maximum burst length			
0	0	1 (single access)			
0	1	2 bursts (address boundary: 1 bit)			
1	0	4 bursts (address boundary: 2 bits)			
1	1	8 bursts (address boundary: 3 bits)			

In areas for which a burst length other than the single access is set, continuous burst access is

performed within the address boundary determined by the burst length only when prefetch access is performed or data having a size exceeding the bus width is read.

Setting of 2 bursts or less as the maximum burst length in the bus width 16-bit area is recommended.

RDY input is ignored in areas for which any burst length other than the single access is set.

[Bit 7] SREN (ShaRed Enable)

This bit sets enabling or disabling of sharing of each chip select area by BRQ/BGRNT as indicated in the following table.

SREN	Sharing enable/disable					
0	Disable sharing by BRQ/BGRNT (CSn cannot be high impedance)					
1	Enable sharing by BRQ/BGRNT (CSn can be high impedance)					

In areas where sharing is enabled, chip select output (\overline{CSn}) is set to high impedance while the bus is open (during \overline{BGRNT} =Low output). In areas where sharing is disabled, chip select output (\overline{CSn}) is not set to high impedance even though the bus is open (during \overline{BGRNT} =Low output).

Access strobe output (AS, BAA, RD, WR0, WR1, WR2, WR3, WR, MCLK, MCLKE) is set to high impedance only if sharing of all areas enabled by CSER is enabled.

[Bit 6] PFEN (PreFetch Enable)

This bit sets enabling and disabling of prefetching of each chip select area as indicated in the following table.

PFEN	Prefetch enable/disable					
0	Disable prefetch					
1	Enable prefetch					

When reading from an area for which prefetching is enabled, the subsequent address is read in advance and stored in the built-in prefetch buffer. When the stored address is accessed from the internal bus, the lookahead data in the prefetch buffer is returned without performing external access.

For more information, see Section 4.8 "Prefetch Operation".

[Bit 5] WREN(WRite Enable)

This bit sets enabling and disabling of writing to each chip select area.

WREN	Write enable/disable					
0	Disable write					
1	Enable write					

If an area for which write operations are disabled is accessed for a write operation from the internal bus, the access is ignored and no external access at all is performed. Set the WREN bit of areas for which write operations are not required, such as data areas, to 1.

[Bit 4] LEND (Little ENDian select)

This bit sets the order of bytes of each chip select area as indicated in the following table.

LEND	Order of bytes					
0	Big endian					
1	Little endian					

Be sure to set the LEND bit of ACR0 to 0. CS0 supports only the big endian method.

[Bits 3-0] TYP3-0 (TYPe select)

These bits set the access type of each chip select area as indicated in Table 4.2-4 "Access Type Settings for Each Chip Select Area".

Table 4.2-4 Access Type Settings for Each Chip Select Area

ТҮР3	TYP2	TYP1	TYP0	Access type
0	0	х	x	Normal access (asynchronous SRAM, I/O, and single/page/burst-ROM/FLASH)
0	1	х	x	Address data multiplex access (8/16-bit bus width only)
0	х	х	0	Disable WAIT insertion by the RDY pin.
0	х	х	1	Enable WAIT insertion by the RDY pin (disabled during bursts).
0	x	0	x	Use the $\overline{\text{WR}}$ 0- $\overline{\text{WR3}}$ pins as write strobes ($\overline{\text{WEn}}$ is always H).
0	х	1	x	Use the $\overline{\text{WEn}}$ pin as the write strobe. ^{*1}
1	0	0	0	Memory type A: SDRAM/FCRAM *2
1	0	0	1	Memory type B: FCRAM ^{*2}
1	0	1	0	Setting disabled
1	0	1	1	Setting disabled
1	1	0	0	Setting disabled
1	1	0	1	Setting disabled
1	1	1	0	Setting disabled
1	1	1	1	Mask area setting (The access type is the same as that of the overlapping area) ^{*3}

*1: If this setting is made, WR0-WR3 can be used as the enable of each bit.

*2: Only the ACR6 and ACR7 registers are valid. The ACR0, ACR1, ACR2, ACR3, ACR4, and ACR5 registers are disabled.

*3: See the CS area mask setting function (next bullet).

Set the access type as the combination of all bits.

For details of the operations of each access type, see the explanation of operation of each type.

○ CS area mask setting function

If you want to set an area some of whose operation settings are changed for a certain CS area (referred to as the base setting area), you can set TYPE3-0 of ARC in another CS area to 1111 so that the area can function as a mask setting area.

If you do not use the mask setting function, disable any overlapping area settings for multiple CS areas.

Access operations to the mask setting area are as follows:

- CS corresponding to a mask setting area is not asserted.
- CS corresponding to a base setting area is not asserted.
- For the following ACR settings, the settings on the mask setting area side are valid:
 - Bits 11-10 (DBW1-0): Bus width setting
 - Bits 9-8 (BST1-0): Burst length setting
 - Bit 7 (SREN): Sharing-enable setting
 - Bit 6 (PFEN): Prefetch-enable setting
 - Bit 5 (WREN): Write-enable setting (For this setting only, only a setting that is the same as that of the base setting area is allowed)
 - Bit 4 (LEND): Little endian setting
- For the following ACR setting, the setting on the base setting area side is valid:
 - Bits 3-0 (TYPE3-0): Access type setting
- For the AWR settings, the settings on the mask setting area side are valid.
- For the CHER settings, the settings on the mask setting area side are valid.

A mask setting area can be set for only part of another CS area (base setting area). You cannot set a mask setting area for an area without a base setting area. Use care when setting ASR and bits ASZ3-0 of ACR.

The following restrictions apply when using these bits:

- A write-enable setting cannot be implemented by a mask.
- Write-enable settings in the base CS area and the mask setting area must be identical.
- If write operations to a mask setting area are disabled, the area is not masked and operates as a base CS area.
- If write operations to the base CS area are disabled but are enabled to the mask setting area, the area has no base, resulting in malfunctions.

4.2.3 Area Wait Register (AWR0-7)

This section explains the configuration and functions of the area wait registers (AWR0-7).

■ Configuration of the Area Wait Registers (AWR0-7)

The area wait registers (AWR0-7: Area Wait Register 0-7) specify various kinds of waits for each chip select area.

Figure 4.2-3 "Configuration of the Area Wait Registers (AWR0-7)" shows the configuration of the area wait registers (AWR0-7).

Figure 4.2-3 Configuration of the Area Wait Registers (AWR0-7) (Continued on next page)

									Initial	value	
AWR0H	31	30	29	28	27	26	25	24	INIT	RST	Access
00000660 _H	W15	W14	W13	W12	W11	W10	W09	W08	01111111 _b	01111111 _b	W/R
AWR0L	23	22	21	20	19	18	17	16			
00000661 _H	 W07	W06	W05	20 W04	W03	W02	W01	W00	11111011 _₿	11111011 _B	W/R
0000001	VV07	0000	0000	VV04	1100	VV02	0001	VV00	IIIIIUIIB	IIIIIUIIB	V V/I 1
AWR1H	15	14	13	12	11	10	9	8			
00000662 _H	W15	W14	W13	W12	W11	W10	W09	W08	XXXXXXXX	XXXXXXXX	W/R
0000002H	W15	VV 1- 1	W10	VVIZ	VVII	W10	W03	**00	~~~~b	~~~~b	VV/11
AWR1L	7	6	5	4	3	2	1	0			
00000663 _н	W07	W06	W05	W04	W03	W02	W01	W00	XXXXXXXXb	XXXXXXXXb	W/R
L								<u> </u>			
AWR2H	31	30	29	28	27	26	25	24			
00000664 _н	W15	W14	W13	W12	W11	W10	W09	W08	XXXXXXXXb	XXXXXXXX _b	W/R
L								II			
AWR2L	23	22	21	20	19	18	17	16			
00000665 _н	W07	W06	W05	W04	W03	W02	W01	W00	XXXXXXXXb	XXXXXXXXb	W/R
AWR3H	15	14	13	12	11	10	9	8			
00000666 _н	W15	W14	W13	W12	W11	W10	W09	W08	XXXXXXXXb	XXXXXXXXb	W/R
AWR3L	7	6	F	4	0	0	4				
1		6	5	4	3	2	1	0	20000000		
00000667 _н	W07	W06	W05	W04	W03	W02	W01	W00	XXXXXXXXb	XXXXXXXXb	W/R
AWR4H	31	30	29	28	27	26	25	24			
00000668 _H	W15	W14	W13	W12	W11	W10	W09	W08	XXXXXXXXb	XXXXXXXXb	W/R
AWR4L	23	22	21	20	19	18	17	16			
]	-										
00000669 _н	W07	W06	W05	W04	W03	W02	W01	W00	XXXXXXXXb	XXXXXXXXb	W/R

									Initial	value	
AWR5H	15	14	13	12	11	10	9	8	INIT	RST	Access
0000066A _H	W15	W14	W13	W12	W11	W10	W09	W08	XXXXXXXXb	XXXXXXXxb	W/R
AWR5L	7	6	5	4	3	2	1	0			
0000066B _H	W07	W06	W05	W04	W03	W02	W01	W00	XXXXXXXXb	$\mathbf{XXXXXXX}_{\mathrm{b}}$	W/R
AWR6H	01	20	20	00	07	06	05	04			
AWRON	31	30	29	28	27	26	25	24			
0000066C _H	W15	W14	W13	W12	W11	W10	W09	W08	XXXXXXXXb	$\mathbf{XXXXXXX}_{\mathrm{b}}$	W/R
AWR6L	23	22	21	20	19	18	17	16			
0000066D _H	W07	W06	W05	W04	W03	W02	W01	W00	XXXXXXXxb	$\mathbf{XXXXXXX}_{\mathrm{b}}$	W/R
AWR7H	15	14	13	12	11	10	9	8			
0000066E _H	W15	W14	W13	W12	W11	W10	W09	W08	XXXXXXXXb	$\mathbf{XXXXXXX}_{\mathrm{b}}$	W/R
AWR7L	7	6	5	4	3	2	1	0			
0000066F _H	W07	W06	W05	W04	W03	W02	W01	W00	XXXXXXXXb	XXXXXXXb	W/R

The function of each bit changes according to the access type (TYP(3-0) bits) setting of the ACR0-7 registers,. A chip select area determined by either of the following settings becomes the area for normal access or a address/data multiplex access operation.

ТҮР3	TYP2	TYP1	TYP0	Access type
0	0	х	х	Normal access (asynchronous SRAM, I/O, and single/page/burst-ROM/FLASH)
0	1	х	х	Address data multiplex access (8/16-bit bus width only)

The following lists the functions of each AWR0-7 bit for a normal access or address/data multiplex access area. Since the initial values of registers other than AWR0 are undefined, set them to their initial values before enabling each area with the CSER register.

The following explains the functions of the bits in the area wait registers (AWR0-7).

CHAPTER 4 EXTERNAL BUS INTERFACE

[Bits 15-12] W15-12 (First Wait Cycle)

These bits set the number of auto-wait cycles to be inserted into the first access cycle of each cycle. Except for the burst access cycles, only this wait setting is used.

Table 4.2-5 "Settings for the Number of Auto-Wait Cycles (During First Access)" lists the settings for the number of auto-wait cycles during first access.

Table 4.2-5 Settings for the Number of Auto-Wait Cycles (During First Access)

W15	W14	W13	W12	First access wait cycle
0	0	0	0	Auto-wait cycle 0
0	0	0	1	Auto-wait cycle 1
1	1	1	1	Auto-wait cycle 15

[Bits 11-8] W11-08 (Inpage Access Wait Cycle)

These bits set the number of auto-wait cycles to be inserted into the inpage access cycle during burst access. They are valid only for burst cycles.

Table 4.2-6 "Settings for the Number of Auto-Wait Cycles (During Burst Access)" lists the settings for the number of auto-wait cycles during burst access.

Table 4.2-6 Settings for the Number of Auto-Wait Cycles (During Burst Access)

W11	W10	W09	W08	Inpage access wait cycle
0	0	0	0	Auto-wait cycle 0
0	0	0	1	Auto-wait cycle 1
1	1	1	1	Auto-wait cycle 15

If the same value is set for the first access wait cycle and inpage access wait cycle, the access time for the address in each access cycle is not the same. This is because the inpage access cycle contains an address output delay.

[Bits 7,6] W07-06 (Read -> Write Idle Cycle)

The read -> write idle cycle is set to prevent collision of read data and write data on the data bus when a write cycle follows a read cycle. During an idle cycle, all chip select signals are negated and the data terminals maintain the high impedance state. If a write cycle follows a read cycle or an access operation to another chip select area occurs after a read cycle, the specified idle cycle is inserted. Table 4.2-7 "Settings of the Idle Cycle" lists the settings for idle cycles.

W07	W06	Read -> write idle cycles
0	0	0 cycle
0	1	1 cycle
1	0	2 cycles
1	1	3 cycles

Table 4.2-7 Settings of the Idle Cycle

[Bits 5, 4] W05, W04 (Write Recovery Cycle)

The write recovery cycle is set if a device that limits the access period after write access is to be controlled. During a write recovery cycle, all chip select signals are negated and the data pins maintain the high impedance state. If the write recovery cycle is set to 1 or more, a write recovery cycle is always inserted after write access.

Table 4.2-8 "Settings for the Number of Write Recovery Cycles" lists the settings for the number of write recovery cycles.

W05	W04	Write recovery cycles
0	0	0 cycle
0	1	1 cycle
1	0	2 cycles
1	1	3 cycles

Table 4.2-8 Settings for the Number of Write Recovery Cycles

[Bits 3] W03 (WR0-WR3, WRn Output Timing Selection)

The WR0-WR3, WRn output timing setting selects whether to use write strobe output as an asynchronous strobe or synchronous write enable. The asynchronous strobe setting corresponds to normal memory/IO. The synchronous enable setting corresponds to clock-synchronized memory/IO (such as the memory in an ASIC).

W03	WR0-WR3, WRn output timing selection	
0	MCLK synchronous write enable output (valid from $\overline{AS}=L$)	
1	Asynchronous write strobe output (normal operation)	

If synchronous write enable (W03 bit of AWR is 1) is used, operations are as follows:

- The timing of synchronous write enable output assumes that the output is captured by the rising edge of MCLK output of an external memory access clock. This timing is different from the asynchronous strobe output timing.
- The WR0-WR3 and WRn terminal output asserts synchronous write enable output at the timing at which AS pin output is asserted. For a write to an external bus, the synchronous write enable output is L. For a read from an external bus, the synchronous write enable output is H.
- Write data is output from the external data output pin in the clock cycle following the cycle in which synchronous write enable output is asserted. If write data cannot be output because the internal bus is temporarily unavailable, assertion of synchronous write enable output may be extended until write data can be output.
- Read strobe output (RD) functions as an asynchronous read strobe regardless of the setting
 of the WR0-WR3 and WRn output timing. Use it as is for controlling the data I/O direction.

If synchronous write enable output is used, the following restrictions apply:

- Do not make the following additional wait settings:
 - $\overline{\text{CSn}} \rightarrow \overline{\text{RD}/\text{WRn}}$ setup (Always set 0 for the W01 bit of AWR)
 - First wait cycle setting (Always set 0000_B for the W15-W12 bits of AWR)
- Do not make the following access type settings (TYPE3-0 bits in the ACR register (bits 3-0))
 - Address/data multiplex bus setting (Always set 0 for the TYPE2 bit of ACR)
 - Setting to use WR0-WR3 as a strobe (Always set 0 for the TYPE1 bit of ACR)
 - RDY input enable setting (Always set 0 for the TYPE0 bit of ACR)
- For synchronous write enable output, always set 1(00_B for bits BST1-0 bits of ACR) as the burst length.

[Bits 2] W02 (Address -> CSn Delay)

The address \rightarrow CSn delay setting is made when a certain type of setup is required for the address when CSn falls or CSn edges are needed for successive accesses to the same chip select area.

Set the address and set the delay from \overline{AS} output to $\overline{CS0}$ - $\overline{CS7}$ output.

W02	Address -> CSn delay		
0	Delay		
1	No delay		

If no delay is selected by setting 1, assertion of $\overline{CS0}$ - $\overline{CS7}$ starts at the same timing that \overline{AS} is asserted. If, at this point, successive accesses are made to the same chip select area, assertion of $\overline{CS0}$ - $\overline{CS7}$ without change between two access operations may continue.

If delay is specified by selecting 0, assertion of $\overline{CS0}$ - $\overline{CS7}$ starts when the external clock memory MCLK output rises. If, at this point, successive accesses are made to the same chip select area, $\overline{CS0}$ - $\overline{CS7}$ are negated at a timing between two access operations. If \overline{CS} delay is selected, one setup cycle is inserted before asserting the read/write strobe after assertion of the delayed \overline{CSn} (operation is the same as the \overline{CSn} -> $\overline{RD}/\overline{WE}$ setup setting of W01).

The address -> $\overline{\text{CSn}}$ delay setting works for $\overline{\text{DACK}}$ signal (basic mode) output to the same area in the same way. DACK output in basic mode has the same waveforms as those of $\overline{\text{CS}}$ output to the same area.

[Bits 1] W01 (CSn -> RD/WRn Setup Extension Cycle)

The $\overline{\text{CSn}} \rightarrow \overline{\text{RD}/\text{WRn}}$ setup extension cycle is set to extend the period before the read/write strobe is asserted after $\overline{\text{CSn}}$ is asserted. At least one setup extension cycle is inserted before the read/write strobe is asserted after $\overline{\text{CS}}$ is asserted.

W01	CSn -> RD/WRn setup delay cycle		
0	0 cycle		
1	1 cycle		

If 0 cycle is selected by setting 0, RD/WR0-WR3/WRn are output at the earliest when external clock MCLK output rises just after CS is asserted. WR0-WR3/WRn may be delayed one cycle or more depending on the internal bus state.

If 1 cycle is selected by setting 1, RD/WR0-WR3/WRn are always output 1 cycle or more later.

When successive accesses are made within the same chip select area without negating \overline{CSn} , a setup extension cycle is not inserted. If a setup extension cycle for determining the address is required, set the W02 bit and insert the address -> \overline{CSn} delay. Since \overline{CSn} is negated for each access operation, the setup extension cycle is enabled.

If the $\overline{\text{CSn}}$ delay set by W02 is inserted, this setup cycle is always enabled regardless of the setting of the W01 bit.

[Bits 0] W00 (RD/WRn -> CSn Hold Extension Cycle)

The $\overline{RD}/\overline{WRn} \rightarrow \overline{CSn}$ hold extension cycle is set to extend the period before negating \overline{CSn} after the read/write strobe is negated. One hold extension cycle is inserted before \overline{CSn} is negated after the read/write strobe is negated.

W00	RD/WRn -> CSn hold extension cycle
0	0 cycle
1	1 cycle

If 0 cycle is selected by setting 0, CS0-CS7 are negated after the hold delay after it starts on the rising edge of external memory clock MCLK output after RD/WR0-WR3/WRn are negated.

If 1 cycle is selected by setting 1, CS0-CS7 are negated one cycle later.

When making successive accesses within the same chip select area without negating \overline{CSn} , the hold extension cycle is not inserted. If a hold extension cycle for determining the address is required, set the W02 bit and insert the address -> \overline{CSn} delay. Since \overline{CSn} is negated for each access operation, this hold extension cycle is enabled.

O Memory type A(SDRAM/FCRAM) and Memory type B(FCRAM)

The chip select areas for which the access type (TYP3 to TYP0 bits) in the ACR6 and ACR7 registers has been set as in Table 1.2 - 18 serve for SDRAM/FCRAM access.

Table 1.2 - 18 lists the access type settings (TYP3 to TYP0 bits).

Table 4.2-9 Access Type Settings (TYP3 - TYP0 Bits)

ТҮР3	TYP2	TYP1	TYP0	Access type
1	0	0	0	Memory type A: SDRAM/FCRAM (Auto - precharge is not used.)

The following explains those functions of individual bits in AWR6 and AWR7 which apply to SDRAM access areas. As the initial value is undefined, set the access type before each area is enabled by the chip select area enable register (CSER).

For all the areas connected to SDRAM/FCRAM, use the same settings for this type of registers.

The following summarizes the functions of individual bits in the area wait registers (AWR6 and AWR7).

[Bit 15] W15: Reserved bit

Be sure to set this bit to 0.

[Bits 14 - 12] W14 to W12 (RAS - CAS delay Cycle): RAS - CAS delay cycles

Set these bits to the number of cycles from RAS output to CAS output.

Table 4.2 - 19 lists the settings for the number of cycles from RAS output to CAS output.

Table 4.2-10 Setting the Number of Cycles from RAS Output to CAS Output

W14	W13	W12	RAS-CAS delay cycle
0	0	0	1 cycle
0	0	0	2 cycles
1	1	1	8 cycles

For all the areas connected to SDRAM/FCRAM, set these bits to the same RAS - CAS delay cycle.

[Bit 11] W11: Reserved bit

Be sure to set this bit to 0.

[Bits 10 - 8] W10 to W08 (CAS latency Cycle): CAS latency

Set these bits to the CAS latency.

Table 4.2 - 20 lists the settings for the CAS latency.

Table 4.2-11 CAS Latency Setting

W10	W09	W08	CAS latency
0	0	0	1 cycle
0	0	0	2 cycles
1	1	1	8 cycles

For all the areas connected to SDRAM/FCRAM, set these bits to the same CAS latency.

[Bits 7 - 6] W07 and W06 (Read - >Write Cycle): Read - to - write cycle

Set these bits to the minimum number of cycles from the last read data input cycle to the write command issuance. Set the minimum number of cycles taken until issuance.

Table 4.2 - 21 lists the settings for the read - to - write cycle.

Table 4.2-12 Read - to - write cycle

W07	W06	Read - to - write cycle
0	0	1 cycle
0	1	2 cycles
1	0	3 cycles
1	1	4 cycles

For all the areas connected to SDRAM/FCRAM, set these bits to the same read - to - write cycle.

The number of read - to - write idle cycles is one smaller than the number of cycles set by this bit.

[Bits 5 - 4] W05 and W04 (Write Recovery Cycle): Write recovery cycle

Set these bits to the minimum number of cycles from the last write data output to the next read command issuance.

Table 4.2 - 22 lists the settings for the write recovery cycle.

 Table 4.2-13
 Write recovery cycle

W05	W04	Write recovery cycle
0	0	Prohibited
0	1	2 cycles

Table 4.2-13 Write recovery cycle

W05	W04	Write recovery cycle
1	0	3 cycles
1	1	4 cycles

For all the areas connected to SDRAM/FCRAM, set these bits to the same write recovery cycle.

[Bits 3 - 2] W03 and W02 (RAS Active time): RAS active time

Set these bits to the minimum number of cycles for RAS active time.

Table 4.2 - 23 lists the settings for RAS active time.

Table 4.2-14 RAS active time

W03	W02	RAS active time
0	0	1 cycle
0	1	2 cycles
1	0	5 cycles
1	1	6 cycles

For all the areas connected to SDRAM/FCRAM, set these bits to the same RAS active time.

[Bits 1 - 0] W01 and W00 (RAS precharge cycle): RAS precharge cycles

Set these bits to the number of RAS precharge cycles.

Table 4.2 - 24 lists the settings for the RAS precharge cycle.

W03	W02	RAS precharge cycle
0	0	1 cycle
0	1	2 cycles
1	0	3 cycles
1	1	4 cycles

Table 4.2-15 RAS precharge cycle

For all the areas connected to SDRAM/FCRAM, set these bits to the same RAS precharge cycle.

4.2.4 Memory setting register (MCRA for SDRAM/FCRAM auto - precharge OFF mode)

This section describes the configuration and the function of memory setting register (MCRA for SDRAM/FCRAM auto - precharge OFF mode).

Structure of the Memory Setting Register (MCRA for SDRAM/FCRAM auto - precharge OFF mode)

Memory setting register (MCRA for SDRAM/FCRAM auto - precharge OFF mode)

The memory setting register (MCRA: Memory Setting Register for extend type - A for SDRAM/ FCRAM auto - precharge OFF mode) is used to make various settings for SDRAM/FCRAM connected to the chip select area.

Figure 4.2-4 shows the bit configuration of the memory setting register (MCRA for SDRAM/ FCRAM auto - precharge OFF mode).

Figure 4.2-4 Bit configuration of the memory setting register (MCRA for SDRAM/FCRAM auto - precharge OFF mode)

							~~	~-		Initial value
	bit	31	30	29	28	27	26	25	24	
Address	00000670 _H	Reserved	PSZ2	PSZ1	PSZ0	WBST	BANK	ABS1	ABS0	XXXXXXXXX _B (INIT) XXXXXXXX _B (RST)
		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	- B()

The register serves as the area for making various settings for SDRAM/FCRAM connected to the chip select area for which the access type (TYP3 to TYP0 bits) in the ACR6 and ACR7 registers has been set as in Table 4.2-25.

Table 4.2-25 lists the access type settings (TYP3 to TYP0 bits).

Table 4.2-16 Access type settings (TYP3 to TYP0 bits)

ΤY	/ P3	TYP2	TYP1	TYP0	Access type
1		0	0	0	Memory type A:SDRAM/FCRAM(not used auto precharge)

MCRB shares register hardware with MCRA. Updating the MCRA therefore updates the MCRB accordingly.

The following summarizes the functions of individual bits in the memory setting register (MCRA for SDRAM/FCRAM auto - precharge OFF mode).

[Bit 31] Reserved bit

Be sure to set this bit to 0.

[Bits 30 - 28] PSZ2, PSZ1, PSZ0 (Page SiZe): Page size

Set these bits to the page size of SDRAM to be connected.

Table 4.2-26 lists the settings for the page size of SDRAM connected.

Table 4.2-17 Settings for the page size of SDRAM

PSZ2	PSZ1	PSZ0	Page size of SDRAM
0	0	0	8-bit column address:A0 to A7(256 memory words)
0	0	1	9-bit column address:A0 to A8(512 memory words)
0	1	0	10-bit column address:A0 to A9(1024 memory words)
0	1	1	11-bit column address:A0 to A9, A11(2048memory words)

Table 4.2-17 Settings for the page size of SDRAM

PSZ2	PSZ1	PSZ0	Page size of SDRAM
1	Х	Х	Prohibited

[Bit 27] WBST (Write BurST enable): Write burst setting

Set this bit to select whether to burst - write for write access.

Table 4.2-27 lists the settings for burst write.

Table 4.2-18 Settings for burst write

WBST	Settings for burst write			
0	Single write			
1	Burst write			

For connecting FCRAM, be sure to set the bit to 1.

FCRAM supports neither burst read nor single write mode.

[Blt 26] BANK (BANK type select): Bank number setting

Set this bit to the number of banks of SDRAM to be connected.

Table 4.2-28 lists the settings for bank number.

Table 4.2-19 settings for bank number

BANK	Settings for bank number
0	2 banks
1	4 banks

[Bits 25 - 24] ABS1, ABS0 (Active Bank Select): Setting of active bank number

Set these bits to the maximum number of banks to be made active simultaneously.

Table 4.2-29 lists the settings for the number of active banks.

Table 4.2-20 Settings for the number of active banks

ABS1	ABS0	Number of active banks
0	0	1 bank
0	1	2 banks
1	0	3 banks
1	1	4 banks

4.2.5 Memory setting register (MCRB for FCRAM auto - precharge ON mode)

This section describes the memory setting register (MCRB for FCRAM auto - precharge ON mode).

Structure of the Memory Setting Register (MCRB for FCRAM auto - precharge ON mode)

Settings for Memory configuration register (MCRB: Memory Configuration Register for extend type - B for FCRAM auto - precharge ON mode) is used to make various settings for FCRAM connected to the chip select area.

Figure 4.2-5 shows the bit configuration of the memory setting register (MCRB for FCRAM auto - precharge ON mode).

Figure 4.2-5 Structure of the Memory Setting Register (MCRB for FCRAM auto - precharge ON mode)

	bit	23	22	21	20	19	18	17	16	Initial value
Address	00000671 _H	Reserved	PSZ2	PSZ1	PSZ0	WBST	BANK	ABS1	ABS0	XXXXXXXXX _B (INIT) XXXXXXXX _B (RST)
		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	B()

The register serves as the area for making various settings for FCRAM connected to the chip select area for which the access type (TYP3 to TYP0 bits) in the ACR6 and ACR7 registers has been set as in Table 4.2-30.

Table 4.2-30 lists the access type settings (TYP3 to TYP0 bits).

Table 4.2-21 Access type settings (TYP3 to TYP0 bits)

ТҮР3	TYP2	TYP1	TYP0	Access type
1	0	0	1	Memory type B: FCRAM (used auto precharge)

MCRB shares register hardware with MCRA. Updating the MCRB therefore updates the MCRA accordingly.

The functions are the same as MCRA. Note, however, that the function of the WBST bit is not available to this TYPE setting.

(FCRAM supports neither burst read nor single write mode.)

4.2.6 I/O Wait Registers for DMAC (IOWR0, 1)

This section explains the configuration and functions of the I/O wait registers for DMAC (IOWR0, 1).

■ Configuration of the I/O Wait Registers for DMAC (IOWR0, 1)

The I/O wait registers for DMAC (IOWR0, 1: I/O Wait Register for DMAC 0, 1) set various kinds of waits during DMA fly-by access.

Figure 4.2-6 "Configuration of the I/O wait registers for DMAC (IOWR0, 1)" shows the configuration of the I/O wait registers for DMAC (IOWR0, 1).

Figure 4.2-6 Configuration of the I/O Wait Registers for DMAC (IOWR0-3)

									Initial	value	
IOWR0	31	30	29	28	27	26	25	24	INIT	RST	Access
00000678 _H	RYE0	HLD0	WR01	WR00	IW03	IW02	IW01	IW00	XXXXXXXxb	XXXXXXXXb	W/R
IOWR1	23	22	21	20	19	18	17	16			
00000679 _H	RYE1	HLD1	WR11	WR10	IW13	IW12	IW11	IW10	XXXXXXXxb	XXXXXXXxb	W/R

■ Functions of Bits in the I/O Wait Registers for DMAC (IOWR0, 1)

The following explains the functions of the bits in the I/O wait registers for DMAC.

[Bits 31, 23] RYE0,1 (RDY enable 0,1)

These bits set the wait control, using RDY, of channels 0-3 during DMAC fly-by access.

RYEn	RDY function setting
0	Disable RDY input for I/O access.
1	Enable RDY input for I/O access.

When 1 is set, wait insertion by the RDY pin can be performed during fly-by transfer on the relevant channel. IOWR and IORD are extended until the RDY pin is enabled. Also, RD/WR0-WR3/WR on the memory side are extended synchronously. If the chip select area of the fly-by transfer destination is set to RDY-enabled in the ACR register, wait insertion by the RDY pin can be performed regardless of the RYEn bit of IOWR. When the chip select area of the fly-by transfer destination is set to RDY-disabled in the ACR register, wait insertion by the RDY pin can only be performed during fly-by access if the area is set to RDY-enabled by the RYEn bit on the IOWR side.

[Bits 30,22] HLD0,1 (Hold Wait Control)

These bits control the hold cycle of the read strobe signal on the transfer source access side during DMA fly-by access.

HLDn	Hold wait setting
0	Do not insert a hold extension cycle.

HLDn	Hold wait setting
1	Insert a hold extension cycle to extend the read cycle by one cycle.

If 0 is set, the read strobe signal (\overline{RD} for memory -> I/O and \overline{IORD} for I/O -> memory) and the write strobe signal (\overline{IOWR} for memory -> I/O and $\overline{WR0}$ - $\overline{WR3}$ and \overline{WR} for I/O -> memory) on the transfer source access side are output at the same timing.

If 1 is set, the read strobe signal is output one cycle longer than the write strobe signal to secure a hold time for data at the transfer source access side when sending it to the transfer destination.

[Bits 29, 28, 21, 20] WR01/00, WR11/00 (I/O Idle Wait)

These bits set the number of idle cycles for continuous access during DMA fly-by access. Table 4.2-22 "Settings for the Number of I/O Idle Cycles" lists the settings for the number of I/O idle cycles.

WRn1	WRn0	Setting of the number of I/O idle cycles
0	0	0 cycle
0	1	1 cycle
1	0	2 cycles
1	1	3 cycles

Table 4.2-22 Settings for the Number of I/O Idle Cycles

If one or more cycles is set as the number of idle cycles, cycles equal to the number specified are inserted after I/O access during DMA fly-by access. During the idle cycles, all \overline{CS} and strobe output is negated and the data pin is set to the high impedance state.

[Bits 27-24, 19-16, 11-8] IW03-00,IW13-10 (I/O Access Wait)

These bits set the number of auto-wait cycles for I/O access during DMA fly-by access.

Table 4.2-23 "Settings for the Number of I/O Wait Cycles" lists the settings for the number of I/O wait cycles.

IWn3	IWn2	IWn1	IWn0	Number of I/O wait cycles
0	0	0	0	0 cycle
0	0	0	1	1 cycle
1	1	1	1	15 cycle

Table 4.2-23 Settings for the Number of I/O Wait Cycles

Because data is synchronized between the transfer source and transfer destination, the I/O side setting of the IWnn bits and the wait setting for the fly-by transfer destination (such as memory), whichever is larger, is used as the number of wait cycles to be inserted. Consequently, more wait cycles than specified by the IWnn bits may be inserted.

4.2.7 Chip Select Enable Register (CSER)

Because data is synchronized between the transfer source and transfer destination, the I/O side setting of the IWnn bits and the wait setting for the fly-by transfer destination (such as memory), whichever is larger, is used as the number of wait cycles to be inserted. Consequently, more wait cycles than specified by the IWnn bits may be inserted.

■ Configuration of the Chip Select Enable Register (CSER)

The chip select enable register (CSER: Chip Select Enable register) enables and disables each chip select area.

Figure 4.2-7 "Configuration of the Chip Select Enable Register (CSER)" shows the configuration of the chip select enable register (CSER).

Figure 4.2-7 Configuration of the Chip Select Enable Register (CSER)

									Initial	Initial value		
	31	30	29	28	27	26	25	24	INIT	RST	Access	
00000680 _H	CSE7	CSE6	CSE5	CSE4	CSE3	CSE2	CSE1	CSE0	00000001 _B	0000001_{B}	R/W	

■ Functions of Bits in the Chip Select Enable Register (CSER)

The following explains the functions of the bits in the chip select enable register (CSER).

[Bits 31-24] CSE7-0 (Chip Select Enable 0-7)

These bits are the chip select enable bits for \overline{CSO} - $\overline{CS7}$.

The initial value is 0000001_B , which enables only the CS0 area.

When 1 is written, a chip select area operates according to the settings of ASR0-7, ACR0-7, and AWR0-7.

Before setting this register, be sure to make all settings required for the corresponding chip select areas.

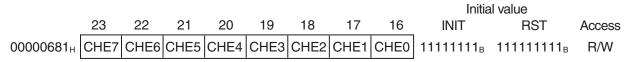
CSE7-0	Area control
0	Disable
1	Enable

Table 4.2-24 " $\overline{\text{CSn}}$ Corresponding to the Chip Select Enable Bits" lists the corresponding $\overline{\text{CSn}}$ for the chip select enable bits.

Table 4.2-24	CSn Corresponding to the Chip Select Enable Bits
--------------	--

CSE bit	Corresponding CSn
Bit 24: CSE0	CS0
Bit 25: CSE1	CS1
Bit 26: CSE2	CS2
Bit 27: CSE3	CS3
Bit 28: CSE4	CS4
Bit 29: CSE5	CS5
Bit 30: CSE6	CS6
Bit 31: CSE7	CS7

4.2.8 Cache Enable Register (CHER)


This section explains the configuration and functions of the cache enable register (CHER).

■ Configuration of the Cache Enable Register (CHER)

The cache enable register (CHER: CacHe Enable Register) controls the transfer of data read from each chip select area.

Figure 4.2-8 "Configuration of the Cache Enable Register (CHER)" shows the configuration of the cache enable register (CHER).

Figure 4.2-8 Configuration of the Cache Enable Register (CHER)

■ Functions of Bits in the Cache Enable Register (CHER)

The following explains the functions of the bits in the cache enable register (CHER).

[Bits 23-16] CHE7-0 (Cache Enable 7-0)

These bits enable and disable each chip select area for transfers to the built-in cache.

CHEn	Cache area setting
0	Not a cache area (data read from the applicable area is not saved in the cache)
1	Cache area (data read from the applicable area is saved in the cache)

4.2.9 Pin/Timing Control Register (TCR)

This section explains the configuration and functions of the pin/timing control register and its function.

■ Configuration of the Pin/Timing Control Register (TCR)

The pin/timing control register (TCR: Terminal and Limiting Control Register) controls the functions related to the general external bus interface controller, such as the setting of common pin functions and timing control.

Figure 4.2-9 "Configuration of the Pin/Timing Control Register (TCR)" shows the configuration of the pin/timing control register (TCR).

Figure 4.2-9 Configuration of the Pin/Timing Control Register (TCR)

■ Functions of Bits in the Pin/Timing Control Register (TCR)

The following explains the functions of the bits in the pin/timing control register (TCR).

[Bit 7] BREN (BRQ Enable)

This bit enables BRQ pin input and external bus sharing.

BREN	BRQ input enable setting		
0	No bus sharing by BRQ/BGRNT. BRQ input is disabled.		
1	Bus sharing by BRQ/BGRNT. BRQ input is enabled.		

In the initial state (0), BRQ input is ignored. When 1 is set, the bus is made open (control with high impedance) and BGRNT is activated (L level is output) when the bus is ready to be made open after the BRQ input becomes H level.

[Bit 6] PSUS (Prefetch suspend)

This bit controls temporary stopping of prefetch to all areas.

PSUS	Prefetch control		
0	Enable prefetch		
1	Suspend prefetch		

If 1 is set, no new prefetch operation is performed before 0 is written. Since during this time the contents of the prefetch buffer are not deleted unless a prefetch buffer occurs, clear the prefetch buffer using the PCLR bit function (bit 5) before restarting prefetch.

[Bit 5] PCLR (Prefetch buffer clear)

This bit completely clears the prefetch buffer.

PCLR	Prefetch buffer control		
0	Normal state		
1	Clear the prefetch buffer.		

If 1 is written, the prefetch buffer is cleared completely. When clearing is completed, the bit value automatically returns to 0. Interrupt (set to 1) the prefetch by the PSUS bit (bit 6) and then clear the buffer (It is also possible to write 11_B to both the PSUS and PCLR bits).

[Bit 4-2] Reserved

This bit is reserved. Be sure to set it to 0.

[Bits 1,0] RDW1,0 (Reduce Wait cycle)

These bits instruct all chip select areas and fly-by I/O channels to reduce only the number of auto-wait cycles in the auto-access cycle wait settings uniformly while the AWR register settings are retained unchanged. The settings for idle cycles, recovery cycles, setup, and hold cycles are not affected. Table 4.2-25 "Settings for Wait Cycle Reduction" lists the settings for the wait cycle reduction for combinations of these bits.

Table 4.2-25 Settings for Wait Cycle Reduction

RDW1	RDW0	Wait cycle reduction	
0	0	Normal wait (AWR0-7 settings)	
0	1	1/2 (1-bit shift to the right) of the AWR0-7 settings	
1	0	1/4 (2-bit shift to the right) of the AWR0-7 settings	
1	1	1/8 (3-bit shift to the right) of the AWR0-7 settings	

The purpose of this function is to prevent an excessive access cycle wait during operation on a low-speed clock (for example, when the base clock is switched to low speed or the frequency division ratio setting of the external bus clock is large).

To reset the wait cycle in these cases, each of the AWRs must usually be rewritten one at a time. However, when the RDW1/0 bit function is used, the access cycle wait is reduced for all of the AWRs in a single operation while all of the other high-speed clock settings in each register are retained.

Before returning the clock to high speed, be sure to reset the RDW1/0 bits to 00_B.

4.2.10 Refresh Control Register (RCR)

This section describes the bit configuration and functions of the refresh control register (RCR).

Structure of the Refresh Control Register (RCR)

The refresh control register (RCR) is used to make various refresh control settings for SDRAM.

The setting of this register is meaningless as long as SDRAM control is not set for any area, in that case the register value must not be updated from the initial state.

When read by a Read - modify - Write instruction, the SELF, RRLD, and PON bits always return to 0.

Figure 4.2-10 shows the bit configuration of the refresh control register (RCR).

Figure 4.2-10 Structure of the Refresh Control Register (RCR)

	RCRH bit	31	30	29	28	27	26	25	24	Initial value
Address	0000 0684 _H	SELF	RRLD	RFINT5	RFINT4	RFINT3	RFINT2	RFINT1	RFINT0	00XXXXXX _B (INIT) 00XXXXXX _B (RST)
		W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R	60,000,000 B(1,01)
	RCRL bit	23	22	21	20	19	18	17	16	
Address	0000 0685 _H	BRST	RFC2	RFC1	RFC0	PON	TRC2	TRC1	TRC0	XXXX0XXX _B (INIT) XXXX0XXX _B (RST)
		W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R	, a a a ter a a 'B(e .)

■ Bit Functions of the Refresh Control Register (RCR)

The following summarizes the functions of individual bits in the refresh control register (RCR).

[Bit 31] SELF (SELF refresh assert): Self - refresh control

This bit is used to control the self - refresh mode for memory that supports the self - refresh mode.

Table 4.2-42 lists the settings for self - refresh control.

Table 4.2-26 Settings for self - refresh control

SELF	Self - refresh control		
0	Auto - refresh or power - down		
1	Transition to self-refresh mode		

Setting the bit to 1 performs a self - refresh after issuing the SELF command. Writing 0 terminates the self - refresh mode.

To hold the contents of SDRAM when putting the LSI into stop mode, use this bit to enter the self - refresh mode before entering the stop mode. At this time, centralized refreshing is performed before transition to the self - refresh mode. External access requests generated before it is completed are put on hold. The mode transits to the stop mode.

The device is released from the self - refresh mode either when 0 is written to this bit or access to SDRAM occurs. At this time, centralized refreshing is performed immediately after the release. If external access such as SDRAM access is attempted, therefore, the external access request is kept on hold and the CPU stops operation for a while. An attempt to put the LSI into the stop mode when it cannot enter the self - refresh mode causes it to directly enter the power save mode, resulting in corruption of data in SDRAM.

When read by a Read - modify - Write instruction, the SELF, RRLD, and PON bits always return to 0.

(Bit 30) RRLD (Refresh counter ReLoaD): Refresh counter start control

This bit is used to start and reload the fresh counter.

Table 4.2-43 shows the function of refresh counter startup control.

Table 4.2-27 Function of refresh counter startup control

RRLD	Refresh counter startup control		
0	Disable (no operation)		
1	Execute auto - refreshing once and reload the RFINT value.		

The refresh counter is inactive in the initial state.

If this bit is set to 1 in this state, all the SDRAM areas currently enabled in the CSER are auto - refreshed either once in distributed refresh mode or the RFC - specified number of times in centralized refresh mode. After that, the values in the RFINT5 to RFINT0 bits are reloaded.

From then on, the refresh counter starts being decremented. Whenever the counter causes an underflow from 000000_B , repeatedly, the values in the RFINT5 to RFINT0 bits are reloaded while at the same time auto - refreshing is performed once.

The bit returns to 0 upon completion of reloading.

To stop auto - refreshing, write 00000_{B} to the RFINT5 to RFINT0 bits.

When read by a Read - modify - Write instruction, the bit always returns a zero.

[Bits 29 - 24] RFINT5 to RFINT0 (ReFresh INTerval): Auto - refresh interval

Set these bits to the interval for automatic refreshing.

The auto - refresh interval can be obtained for distributed refresh mode {(REFINT5 - REFINT0 value) x 32 x (external bus clock cycle)} or for centralized refresh mode {(REFINT5 - REFINT0 value) x 32 x (RFC specified number of times) x (external bus clock cycle)}

Calculate the design value in consideration of the maximum RAS active time.

The refresh counter keeps on being decremented even while the auto - refresh command is being issued.

[Bit 23] BRST (BuRST refresh select): Burst refresh control

This bit is used to control the operation mode for auto - refreshing.

Table 4.2-44 shows the function of burst refresh control.

Table 4.2-28 Function of burst refresh control

BRST	Burst refresh control
0	Distributed refresh (Auto - refresh is activated at intervals.)
1	Burst refresh (Auto - refresh is activated repeatedly at one time.)

When distributed refreshing is set, the auto - refresh command is issued once at every refresh interval.

When burst refreshing is set, the auto - refresh command is issued continuously for the number of times set in the refresh counter at every refresh interval.

[Bits 22 - 20] RFC2, RFC1, RFC0 (ReFresh Count): Refresh count

Set these bits to the number of times a refresh must be performed to refresh all SDRAM.

Table 4.2-45 shows the number of times to refresh.

Table 4.2-29 Number of times to refresh

RFC2	RFC1	RFC0	Number of times to refresh
0	0	0	256
0	0	1	512
0	1	0	1024
0	1	1	2048
1	0	0	4096
1	0	1	8192
1	1	0	Setting prohibited
1	1	1	Refresh prohibited

The number of times to refresh specified here is the number of times centralized refreshing is performed before and after transition to the self - refresh mode. When burst refreshing has been selected with the BRST bit, the number of times to refresh is also the number of times the refresh command is issued at every refresh interval.

[Bit 19] PON (Power ON): Power - on control

This bit is used to control the SDRAM (FCRAM) power - on sequence.

Table 4.2-46 shows the function of power - on control.

Table 4.2-30 Function of power - on control

PON	Power-on control		
0	Disabled (no-operation)		
1	Start power-on sequence		

Writing 1 to the PON bit starts the SDRAM power - on sequence.

Before starting the power - on sequence, be sure to set the relevant registers such as AWR, MCRA(B), and CSER.

This bit returns to 0 as soon as the power - on sequence is started.

When enabling the PON bit, set RFINT and enable RRLD to activate the refresh counter.

Refreshing is not performed only with the PON bit.

Do not enable this bit along with the SELF bit.

When read by a Read - modify - Write instruction, the bit always returns 0.

[Bits 18 - 16] TRC2, TRC1, TRC0 (Time of Refresh Cycle): Refresh cycle (tRC)

These bits set the refresh cycle (tRC).

Table 4.2-47 lists the settings for the refresh cycle (tRC).

Table 4.2-31	Settings	for the re	fresh cy	/cle ((tRC)	ļ
--------------	----------	------------	----------	--------	-------	---

TRC2	TRC1	TRC0	Refresh cycle (tRC)
0	0	0	4
0	0	1	5
0	1	0	6
0	1	1	7
1	0	0	8
1	0	1	9
1	1	0	10
1	1	1	11

4.3 Setting Example of the Chip Select Area

In the external bus interface, a total of eight chip select areas can be set. This section presents an example of setting the chip select area.

■ Example of Setting the Chip Select Area

The address space of each area can be placed, in units of a minimum of 64 KB, anywhere in the 4 GB space using ASR0-7 (Area Select Registers) and ACR0-7 (Area Configuration Registers). When bus access is made to an area specified by these registers, the corresponding chip select signals (CS0-CS7) are activated (L output) during the access cycle.

O Example of setting ASRs and ASZ3-0

- ASR1=0003_H ACR1 ASZ3-0=0000_B: Chip select area 1 is assigned to 00030000_H to 0003FFFF_H.
- ASR2=0FFC_H ACR2 ASZ3-0=0010_B: Chip select area 2 is assigned to 0FFC0000_H to 10000000_{H} .
- ASR3=0011_H ACR3 SZ3-0=0100_B: Chip select area 3 is assigned to 00100000_H to 00200000_H.

Since at this point 1 MB is set for bits ASZ3-0 of the ACR, the unit for boundaries 1 MB and bits 19-16 of ASR3 are ignored. Before there is any writing to ACR0 after a reset, 0000000_{H} -FFFFFFF_H is assigned to chip select area 0.

Set the chip select areas so that there is no overlap.

Figure 4.3-1 "Example of Setting the Chip Select Area" shows an example of setting the chip select area.

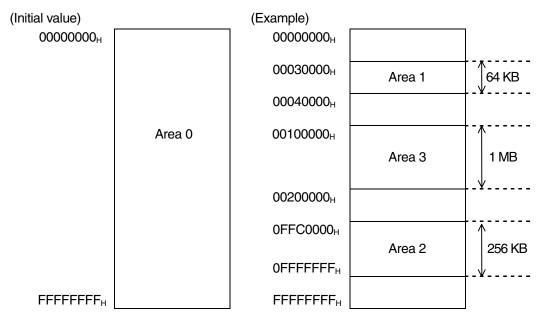
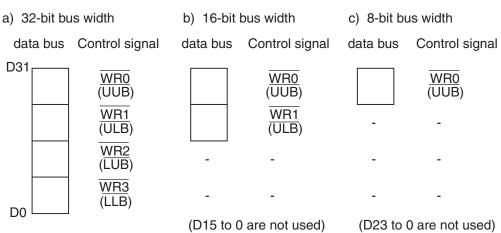


Figure 4.3-1 Example of Setting the Chip Select Area


4.4 Endian and Bus Access

There is a one-to-one correspondence between the WR0-WR3 control signal and the byte location regardless of the endian method (big or little) and the data bus width. The following summarizes the location of bytes on the data bus of the MB91301 series used according to the specified data bus width and the corresponding control signal for each bus mode.

Relationship between Data Bus Width and Control Signal

This section summarizes the location of bytes on the data bus used according to the specified data bus width and the corresponding control signal for each bus mode.

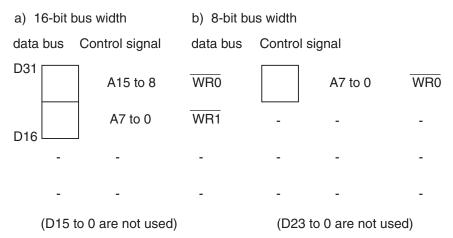

O Ordinary bus interface

Figure 4.4-1 Data Bus Width and Control Signal on the Ordinary Bus Interface

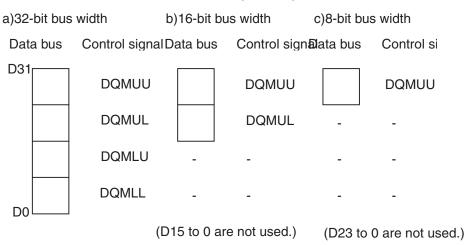
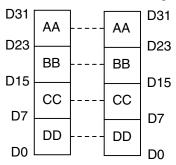

O Time division I/O interface

Figure 4.4-2 Data Bus Width and Control Signal in the Time Division I/O Interface

O SDRAM Interface

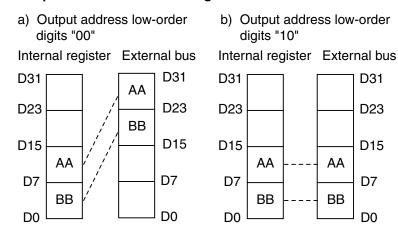
Figure 4.4-3 Data bus width of the SDRAM (FCRAM) interface and its control signals

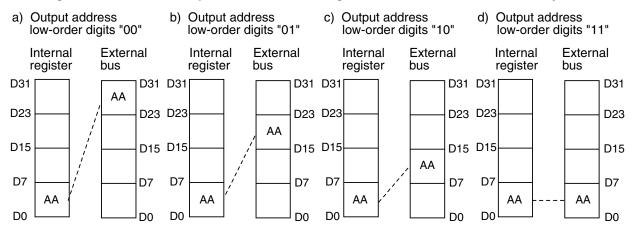
4.4.1 Big Endian Bus Access


With the exception of the CS0 area of the MB91301 series, either the big endian method or the little endian method can be selected for each chip select area. If 0 is set for the LEND bit of the ACR register, the area is treated as big endian. The MB91301 series is normally big endian and performs external bus access.

Data Format

The relationship between the internal register and the external data bus is as follows:

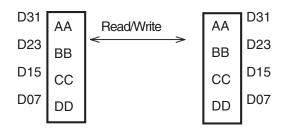

O Word access (when LD/ST instruction executed)


Figure 4.4-4 Relationship between Internal Register and External Data Bus for Word Access

Internal register External register

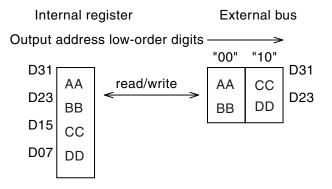
Figure 4.4-5 Relationship between the Internal Register and External Data Bus for Halfword Access

Figure 4.4-6 Relationship between Internal Register and External Data Bus for Byte Access


Data Bus Width

O 32-bit bus width

Figure 4.4-7 Relationship between Internal Register and External Bus Having 32-Bit Bus Width


Internal resistor

External bus

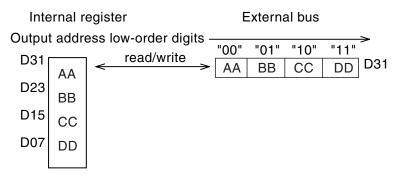
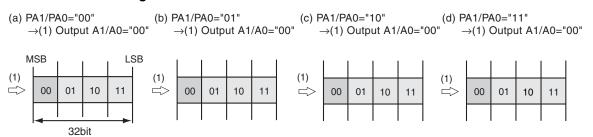

O 16-bit bus width

Figure 4.4-8 Relationship between Internal Register and External Bus Having 16-Bit Bus Width

O 8-bit bus width

Figure 4.4-9 Relationship between Internal Register and External Bus having 8-Bit bus Width

External Bus Access


Figure 4.4-11 "External bus Access for 16-Bit Bus Width" and Figure 4.4-12 "External Bus Access for 8-Bit Bus Width" show external bus access (16-bit/8-bit bus width) separately for word, halfword, and byte access. The following items are included in Figure 4.4-11 "External bus Access for 16-Bit Bus Width" and Figure 4.4-12 "External Bus Access for 8-Bit Bus Width" and Figure 4.4-12 "External Bus Access for 8-Bit Bus Width" and Figure 4.4-12 "External Bus Access for 8-Bit Bus Width" and Figure 4.4-12 "External Bus Access for 8-Bit Bus Width" and Figure 4.4-12 "External Bus Access for 8-Bit Bus Width" and Figure 4.4-12 "External Bus Access for 8-Bit Bus Width" and Figure 4.4-12 "External Bus Access for 8-Bit Bus Width".

- Access byte location
- · Program address and output address
- · Bus access count

The MB91301 series does not detect misalignment errors.

Therefore, for word access, the lower two bits of the output address are always 00 regardless of whether 00, 01, 10, or 11 is specified as the lower two bits by the program. For halfword access, the lower two bits of the output address are 00 if the lower two bits specified by the program are 00 or 01, and are 10 if 10 or 11.

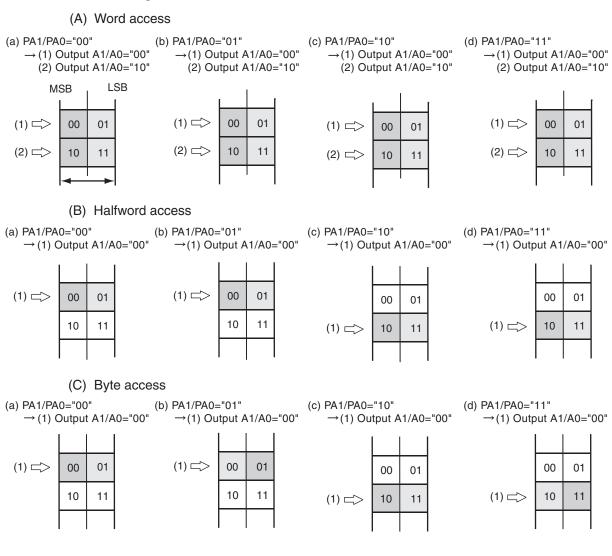
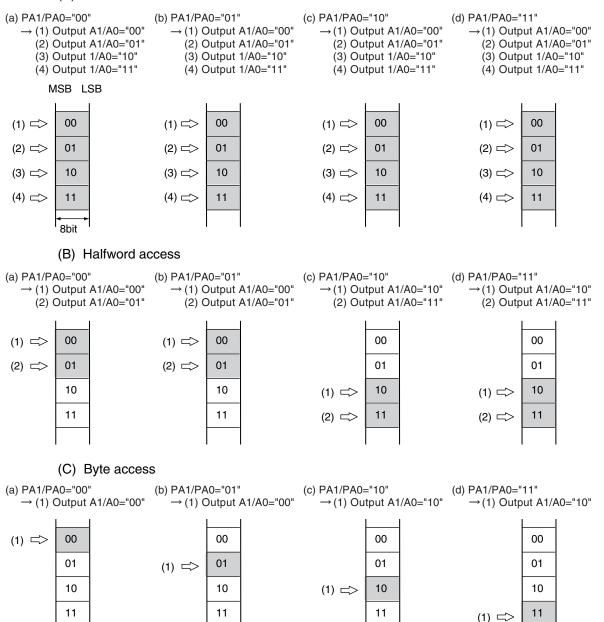

O 32-bit bus width

Figure 4.4-10 External bus Access for 32-Bit Bus Width

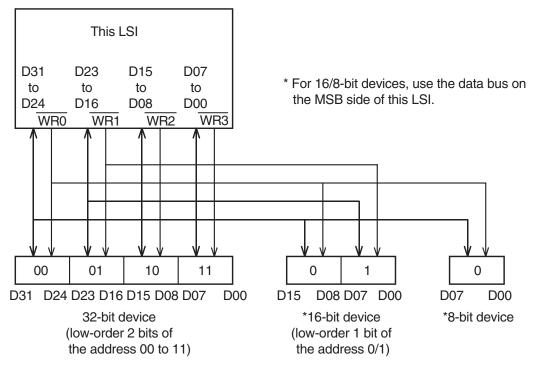
O 16-bit bus width



189

O 8-bit bus width


Figure 4.4-12 External Bus Access for 8-Bit Bus Width


(A) Word access

Example of Connection with External Devices

Figure 4.4-13 "Example of Connecting the MB91301 Series to External Devices" shows an example of connection the MB91301 series to external devices.

4.4.2 Little Endian Bus Access

Little endian (LER) external bus access is performed for an area for which the little endian method is set.

Little endian bus access on the MB91301 series is implemented by using the bus access operation used for the big endian method. Basically, the order of output addresses and control signal output are the same as for the big endian method and the byte locations on the data bus are swapped in accordance with the bus width. Note that, when a connection is made, the big endian area and the little endian area must be kept physically separate.

Differences between Little Endian and Big Endian

The following explains the differences between little endian and big endian.

The order of addresses that are output is the same for little endian and big endian.

The data bus control signal used for 32/16/8-bit bus width is the same for little endian and big endian.

O Word access

The byte data on the MSB side for big endian address 00 becomes byte data on the LSB side when the little endian method is used.

For a word address, the locations of all four bytes in the word are reversed:

00 -> 11, 01 -> 10, 10 -> 01, 11 -> 00

O Halfword access

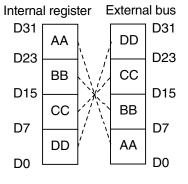
The byte data on the MSB side for the big endian address 0 becomes byte data on the LSB side when the little endian method is used.

For halfword access, the byte locations of two bytes are reversed.

0 -> 1, 1 -> 0

O Byte access

There is no difference between little endian and big endian.

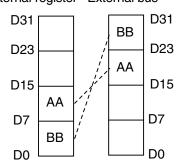

Restrictions on the Little Endian Area

- If prefetch is enabled for a little endian area, always use word access to access the area. If data written to the prefetch buffer is accessed with any length other than word length, the correct endian conversion is not performed and the wrong data will be read. The reason is hardware restrictions related to the endian conversion mechanism.
- Do not place any instruction code in a little endian area.

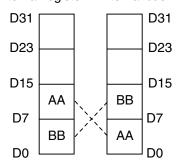
Data Format

The relationship between the internal register and external data bus is as follows:

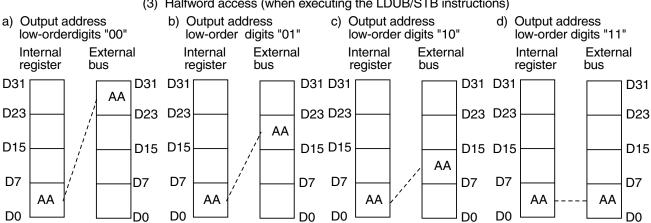
Figure 4.4-14 Relationship between the Internal Register and External Data Bus for Word Access



(1) Word access (when executing the LD/ST instructions)


Figure 4.4-15 Relationship between Internal Register and External Data Bus for Halfword Access

(2) Halfword access (when executing the LDUH/STH instructions)

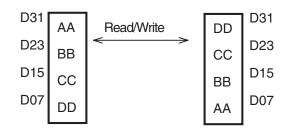

a) Output address low-order digits "00" Internal register External bus

b) Output address low-order digits "10" Internal register External bus

Figure 4.4-16 Relationship between Internal Register and External Data Bus for Byte Access

(3) Halfword access (when executing the LDUB/STB instructions)

Data Bus Width


The following shows the relationships between the internal register and external data bus for each data bus width.

O 32-bit bus width

Figure 4.4-17 Relationship between Internal Register and External Bus Data for 32-bit Bus Width


Internal resistor

External bus

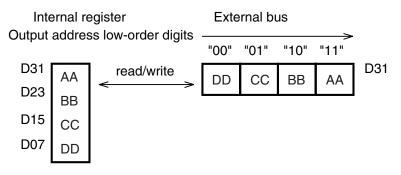

O 16-bit bus width

Figure 4.4-18 Relationship between Internal Register and External Bus Data for 16-bit Bus Width

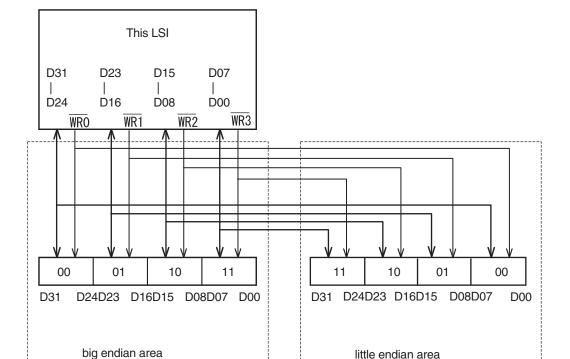
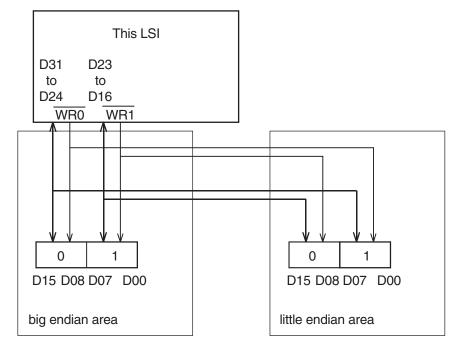
O 8-bit bus width

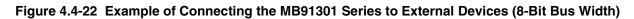
Figure 4.4-19 Relationship between the Internal Register and External Data Bus in the 8-bit Bus Width

Examples of Connection with External Devices

The following shows examples of connecting the MB91301 series to external devices for each bus width.

O 32-bit bus width


Figure 4.4-20 Example of Connecting the MB91301 Series to External Devices (32-Bit Bus Width)

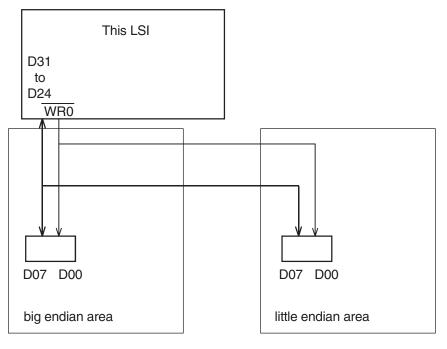

\bigcirc 16-bit bus width

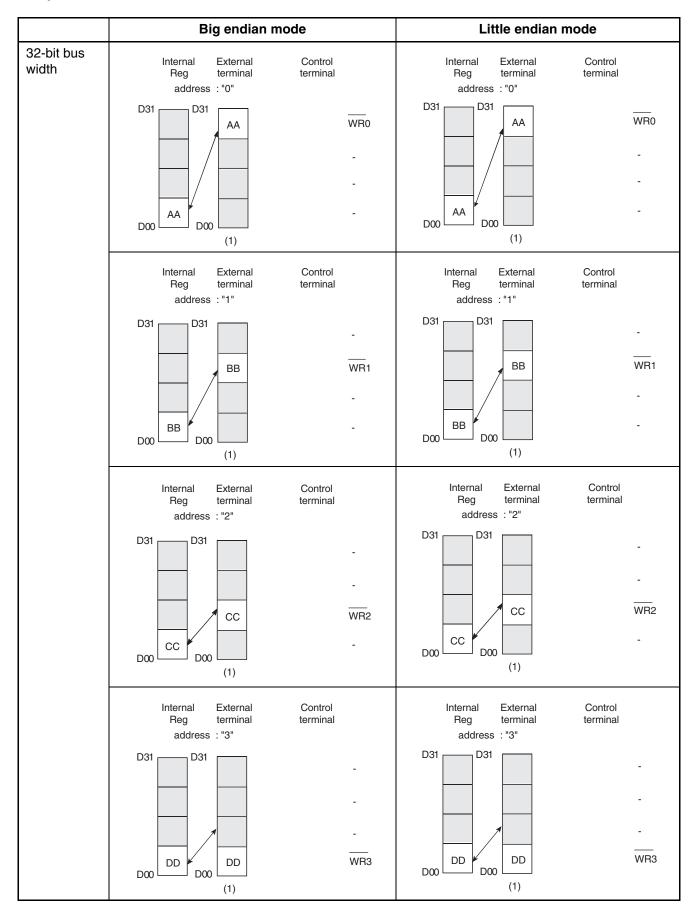
Figure 4.4-21 Example of Connecting the MB91301 Series to External Devices (16-Bit Bus Width)

O 8-bit bus width

4.4.3 Comparison of Big Endian and Little Endian External Access

This section shows a comparison of big endian and little endian external access in word access, halfword access, and byte access for each bus width.

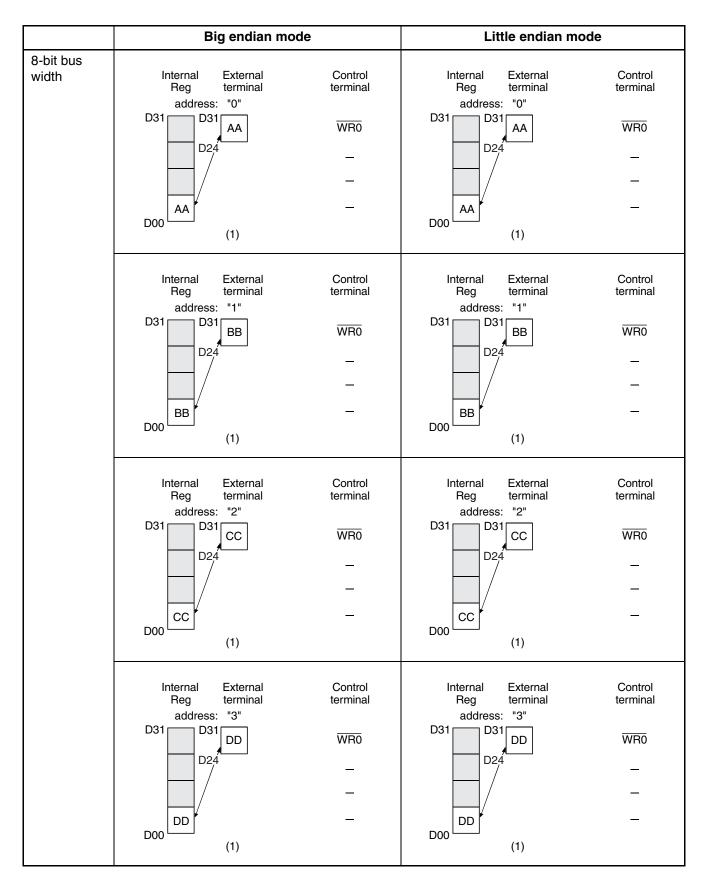
Word Access


	Big endian mode	Little endian mode		
32-bit bus width	Internal External Control Reg terminal terminal address: Lower 2-bit: "0" $D31 \longrightarrow D31 \longrightarrow AA$ $BB \longrightarrow BB \longrightarrow WR1$ $CC \longrightarrow CC \longrightarrow WR2$ $D00 \longrightarrow DD \longrightarrow WR3$ (1)	Internal External Control Reg terminal terminal address : "0" D31 AA DD D31 WR0 BB CC WR1 BB WR2 D00 AA D00 WR3		
16-bit bus width	Internal External Control Reg terminal address: "0" "2" D31 AA CC WR0 BB DD WR1 CC D00 (1) (2)	Internal External Control Reg terminal address: "0" "2" D31 AA D31 DD BB WR0 BB D16 CC AA WR1 CC AA WR1 D00 D00 (1) (2)		
8-bit bus width	Internal External Control Reg terminal terminal address: "0" "1" "2" "3" D31 AA BB CC DD WR0 BB $/$ DD $$ (1) (2) (3) (4)	Internal External Control terminal address: "0" "1" "2" "3" D31 AA $D31$ DD CC BB AA $WR0$ BB $D24$ $$ DD $$ (1) (2) (3) (4)		

Halfword Access

	Big endian mode		Little endian mode		
32-bit bus width	Internal External Reg terminal address : "0"	Control terminal	Internal External Reg terminal address : "0"	Control terminal	
	D31 D31 AA BB D00 (1)	WR0 WR1 - -	D31 D31 BB AA BB D00 (1)	WR0 WR1 - -	
	Internal External Reg terminal address : "2" D31 D31 CC CC CC DD DD DD DD (1)	Control terminal - - WR2 WR3	Internal External Reg terminal address : "2" D31 D31 CC DD DD DD CC CC DD (1)	Control terminal - - WR2 WR3	

	Big endian mode		Little endian mode		
16-bit bus width	Internal External Reg terminal address: "2" D31 D31 AA D16 BB AA - BB - D00 (1)	Control terminal WR0 WR1 	Internal External reg terminal address: "0" D31 D31 D31 B A A A A BB - D00 (1)	Control terminal WR0 WR1 _	
	Internal External Reg terminal address: "2" D31 D31 CC DD D D16 - D00 (1)	Control terminal WR0 WR1 -	Internal External address: "2" D31 D31 CC DD DD CC DD D00 (1)	Control terminal WR0 WR1 _	
8-bit bus width	Internal External Reg terminal address: "0" "1" D31 AA BB D24 AA BB D00 (1) (2)	Control terminal WR0 	Internal External Reg terminal address: "0" "1" D31 BB AA D24 AA BB D00 (1) (2)	Control terminal WR0 	
	Internal External address: "2" "3" D31 D31 CC DD D24 CC DD D0 (1) (2)	Control terminal WR0 	Internal External Reg terminal address: "2" "3" D31 DD CC D24 CC DD (1) (2)	Control terminal WR0 	


Byte Access

CHAPTER 4 EXTERNAL BUS INTERFACE

	Big endian mode		Little endian mode	
16-bit bus width	Internal External Reg terminal address: "0" D31 D31 AA D16 AA D00 (1)	Control terminal WR0 	Internal External Reg terminal address: "0" D31 D31 AA D16 D16 D00 (1)	Control terminal WR0
	Internal External Reg terminal address: "1" D31 D31 BB D16 BB (1)	Control terminal WR1 	Internal External Reg terminal address: "1" D31 D31 BB D00 D16 BB (1)	Control terminal WR1
	Internal External Reg terminal address: "2" D31 D31 CC D16 CC D00 (1)	Control terminal WR0 	Internal External Reg terminal address: "2" D31 D31 CC D00 (1)	Control terminal WR0
	Internal External Reg terminal address: "3" D31 D31 DD D16 D00 (1)	Control terminal WR1 	Internal External Reg terminal address: "3" D31 DD D16 D00 (1)	Control terminal WR1

CHAPTER 4 EXTERNAL BUS INTERFACE

202

4.5 Operation of the Ordinary bus interface

This section explains operation of the ordinary bus interface.

Ordinary Bus Interface

For the ordinary bus interface, two clock cycles are the basic bus cycles for both read access and write access.

The following operational phases of the ordinary bus interface are explained below with the use of a timing chart.

- Basic timing (for successive accesses)
- WRn + byte control type
- Read -> write
- Write -> write
- · Auto-wait cycle
- External wait cycle
- Synchronous write enable output
- CSn delay setting
- CSn -> RD/WRn setup, RD/WE -> CSn hold setting
- DMA fly-by transfer (I/O -> memory)
- DMA fly-by transfer (memory -> I/O)

4.5.1 Basic Timing

This section shows the basic timing for successive accesses.

Basic Timing (For Successive Accesses)

Figure 4.5-1 "Basic Timing (For Successive Accesses)" shows the operation timing for (TYP3-0 = 0000_B , AWR = 0008_H)

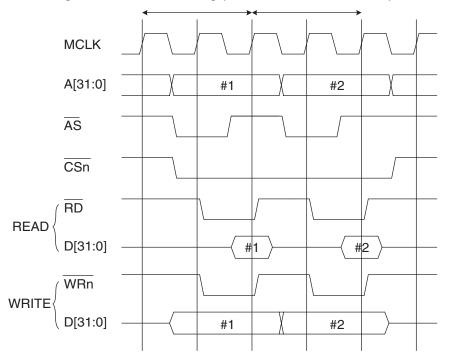


Figure 4.5-1 Basic Timing (For Successive Accesses)

- AS is asserted for one cycle in the bus access start cycle.
- A31-0 continues to output the address of the location of the start byte in word/halfword/byte access from the bus access start cycle to the bus access end cycle.
- If the W02 bit of the AWR0-7 registers is 0, CS0-CS7 are asserted at the same timing as AS. For successive accesses, CS0-CS7 are not negated. If the W00 bit of the AWR register is 0, CS0-CS7 are negated after the bus cycle ends. If the W00 bit is 1, CS0-CS7 are negated one cycle after bus access ends.
- RD and WR0-WR3 are asserted from the 2nd cycle of the bus access. Negation occurs after the wait cycle of bits W15-W12 of the AWR register is inserted. The timing of asserting RD and WR0-WR3 can be delayed by one cycle by setting the W01 bit of the AWR register to 1. However, depending on the internal state, the assertion of WR0-WR3 may not start in the 2nd cycle and may even be delayed if the W01 bit is set to 0.
- If a setting is made so that WR0-WR3 is used like TYP3-0=0x0xB, WRn is always H.
- For read access, D31-0 is read when MCLK rises in the cycle in which the wait cycle ended after RD was asserted.
- For write access, data output to D31-0 starts at the timing at which WR0-WR3 are asserted.

4.5.2 Operation of WRn + Byte Control Type

This section shows the operation timing for the \overline{WRn} + byte control type.

Operation Timing of the WRn + Byte Control Type

Figure 4.5-2 "Timing Chart for the $\overline{\text{WRn}}$ + Byte Control Type" shows the operation timing for (TYP3-0 = 0010_B, AWR = 0008_H).

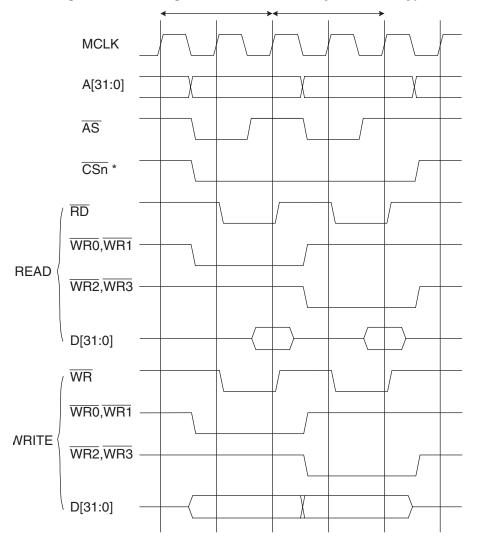
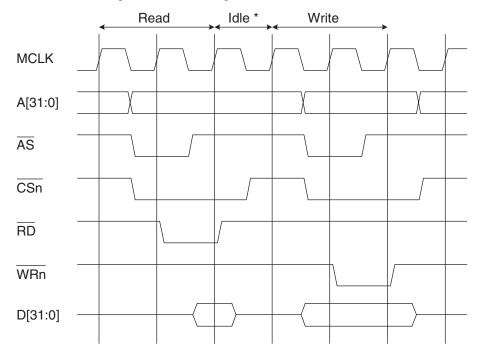


Figure 4.5-2 Timing Chart for the WRn + Byte Control Type

- Operation of AS, CSn, RD, A31-0, and D31-16 is the same as that described in 4.5.1 "Basic Timing". WRn is asserted from the 2nd cycle of the bus access. Negation occurs after the wait cycle of bits W15-W12 of the AWR register is inserted. The timing of asserting RD and WR0-WR3 can be delayed by one cycle by setting the W01 bit of the AWR register to 1. However, depending on the internal state, assertion of WR0-WR3 may not start in the 2nd cycle and may even be delayed if the W01 bit is set to 0. (Operation is the same as that for WR0-WR3 described in 4.5.1 "Basic Timing".)
- WR0-WR3 indicate the byte location expressed with negative logic when they are used for access as the byte enable signal. Assertion continues from the bus access start cycle to the

bus access end cycle and changes at the same timing as the address timing. The byte location for access is indicated for both read access and write access.


- For write access, data output to D31-16 starts at the timing at which $\overline{\text{WRn}}$ is asserted. If the areas defined by TYP3-0=0x0x_B ($\overline{\text{WR0}}$ - $\overline{\text{WR3}}$ used) and TYP3-0=0x1x_B ($\overline{\text{WRn}}$ + byte control) are mixed, be sure to make the following setting for all areas that will be used. (For details, see the notes).
 - Set at least one read -> write idle cycle.
 - Set at least one write recovery cycle.

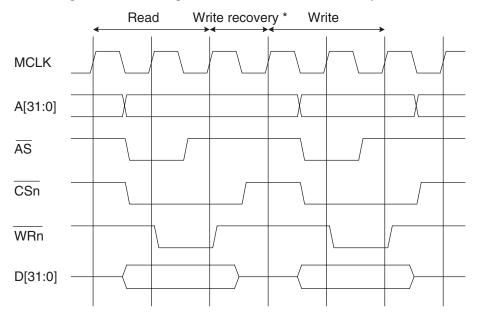
4.5.3 Read -> Write Operation

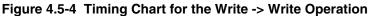
This section shows the operating timing for read -> write.

Operation Timing of Read -> Write

Figure 4.5-3 "Timing Chart for Read -> Write" shows the operation timing for (TYP3-0= 0000_B , AWR= 0048_H).

Figure 4.5-3 Timing Chart for Read -> Write


- Setting of the W07/W06 bits of the AWR register enables 0-3 idle cycles to be inserted.
- Settings in the CS area on the read side are enabled.
- This idle cycle is inserted if the next access after a read access is write access or access to another area.


4.5.4 Write -> Write Operation

This section shows the operation timing for write -> write.

Write -> Write Operation

Figure 4.5-4 "Timing Chart for the Write -> Write Operation" shows the operation timing for $(TYP3-0=0000_B, WR=0018_H)$.

- Setting of the W05/W04 bits of the AWR register enables 0-3 write cycles to be inserted.
- After all of the write cycles, recovery cycles are generated.
- Write recovery cycles are also generated if write access is divided into phases for access with a bus width wider than that specified.

4.5.5 Auto-Wait Cycle

This section shows the operation timing for the auto-wait cycle.

Auto-Wait Cycle Timing

Figure 4.5-5 "Timing Chart for the Auto-Wait Cycle" shows the operation timing for (TYP3- $0=0000_B$, AWR= 2008_H).

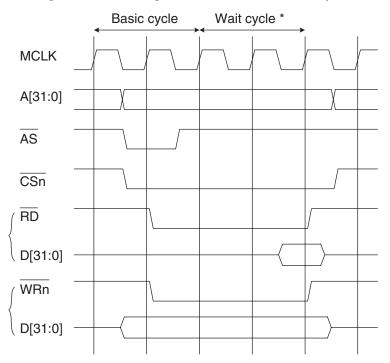


Figure 4.5-5 Timing Chart for the Auto-Wait Cycle

Setting of the W15-12 bits (first wait cycles) of the AWR register enables 0-15 auto-wait cycles to be set.

In Figure 4.5-5 "Timing Chart for the Auto-Wait Cycle", two auto-wait cycles are inserted, making a total of four cycles for access. If auto-wait is set, the minimum number of bus cycles is 2 cycles + (first wait cycles). For a write operation, the minimum number of bus cycles may be still longer depending on the internal state.

4.5.6 External Wait Cycle

This section shows the operation timing for the external wait cycle.

External Wait Cycle Timing

Figure 4.5-6 "Timing Chart for the External Wait Cycle" shows the operation timing for (TYP3- $0=0001_B$, AWR= 2008_H).

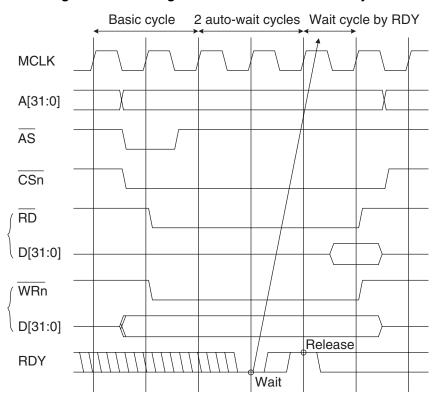


Figure 4.5-6 Timing Chart for the External Wait Cycle

Setting 1 for the TYP0 bit of the ACR register and enabling the external RDY input pin enables external wait cycles to be inserted.

In Figure 4.5 - 6, the oblique - lined portion of the RDY pin is invalid because the wait based on the automatic wait cycle remains in effect.

The value at the RDY input pin is evaluated from the last automatic wait cycle on.

Once a wait cycle is completed, the value at the PDY input pin remains invalid until the next access cycle is started.

4.5.7 Synchronous Write Enable Output

This section shows the operation timing for synchronous write enable output.

Operation Timing for Synchronous Write Enable Output

Figure 4.5-7 "Timing Chart for Synchronous Write Enable Output" shows the operation timing for (TYP3-0=0000_B, AWR=0000_H).

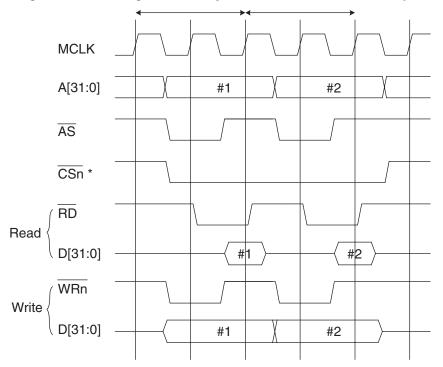


Figure 4.5-7 Timing Chart for Synchronous Write Enable Output

- If synchronous write enable output is enabled (If the W03 bit of the AWR is 1), operation is as follows.
- WR0-WR3 and WRn pin output asserts synchronous write enable output at the timing at which AS pin output is asserted. For a write to an external bus, the synchronous write enable output is L. For a read from an external bus, the synchronous write enable output is H.
- Write data is output from the external data output pin in the clock cycle following the cycle in which synchronous write enable output is asserted. If write data cannot be output because the internal bus is temporarily unavailable, assertion of synchronous write enable output may be extended until write data can be output.
- Read strobe output (RD) functions as an asynchronous read strobe regardless of the setting of WR0-WR3 and WRn output timing. Use it as is for controlling the data I/O.

• If synchronous write enable output is used, the following restrictions apply:

Do not set the following additional wait because the timing for synchronous write enable output becomes meaningless:

- CS -> RD/WRn setup (Always write 0 to the W01 bit of AWR)
- First wait cycle setting (Always write 0000 to bits W15-W12 of AWR)

Do not set the following access types (TYPE3-0 bits (Bits 3-0) in the ACR register) because the timing for synchronous write enable output becomes meaningless:

- Multiplex bus setting (Always write 0 to the TYPE2 bit of ACR)
- RDY input enable setting (Always write 0 to the TYPE0 bit of ACR)

Always set the burst length to "1" (BST1 to 0 bit = 0) for the synchronous write enable output

4.5.8 CSn Delay Setting

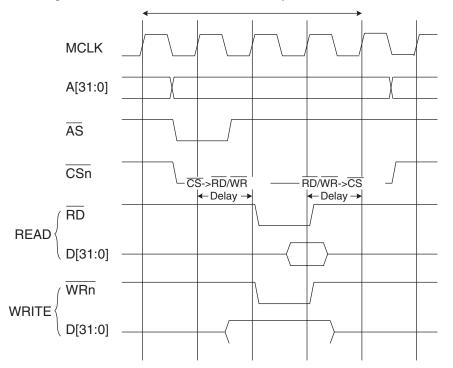
This section shows the operation timing for the $\overline{\text{CSn}}$ delay setting.

■ Operation Timing for the CS Delay Setting

Figure 4.5-8 "Operation Timing Chart for the \overline{CS} Delay Setting" shows the operation timing for (TYP3-0=0000_B, AWR=000C_H).

Figure 4.5-8 Operation Timing Chart for the CS Delay Setting

If the W02 bit is 1, assertion starts in the cycle following the cycle in which \overline{AS} is asserted. For successive accesses, a negation period is inserted.

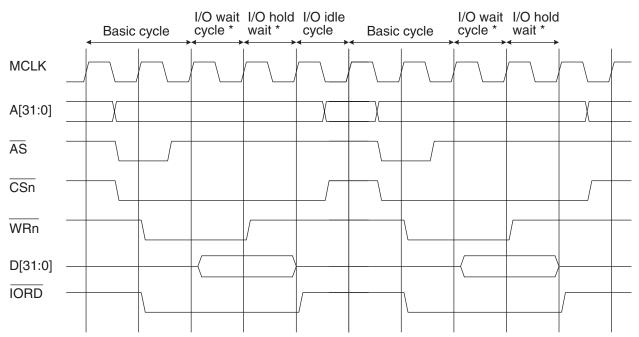

4.5.9 CSn -> RD/WRn Setup and RD/WRn -> CSn Hold Setting

This section shows the operation timing for the $\overline{\text{CSn}} \rightarrow \overline{\text{RD}}/\overline{\text{WRn}}$ setup and $\overline{\text{RD}}/\overline{\text{WRn}} \rightarrow \overline{\text{CSn}}$ hold settings.

■ Operation Timing for the CSn -> RD/WRn Setup and RD/WRn -> CSn Hold Settings

Figure 4.5-9 "Timing Chart for the $\overline{CSn} \rightarrow \overline{RD}/WRn$ Setup and $\overline{RD}/WRn \rightarrow \overline{CSn}$ Hold Settings" shows the operation timing for (TYP3-0=0000_B AWR=000B_H).

Figure 4.5-9 Timing Chart for the CSn -> RD/WRn Setup and RD/WRn -> CSn Hold Settings


- Setting 1 for the W01 bit of the AWR register enables the CSn -> RD/WRn setup delay to be set. Set this bit to extend the period between chip select assertion and read/write strobe.
- Setting 1 for the W00 bit of the AWR register enables the RD/WRn -> CSn hold delay to be set. Set this bit to extend the period between read/write strobe negation and chip select negation.
- The CSn -> RD/WRn setup delay (W01 bit) and RD/WRn -> CSn hold delay (W00 bit) can be set independently.
- When making successive accesses within the same chip select area without negating the chip select, neither a CSn -> RD/WRn setup delay nor an RD/WRn -> CSn hold delay is inserted.
- If a setup cycle for determining the address or a hold cycle for determining the address is needed, set 1 for the address -> CSn delay setting (W02 bit of the AWR register).

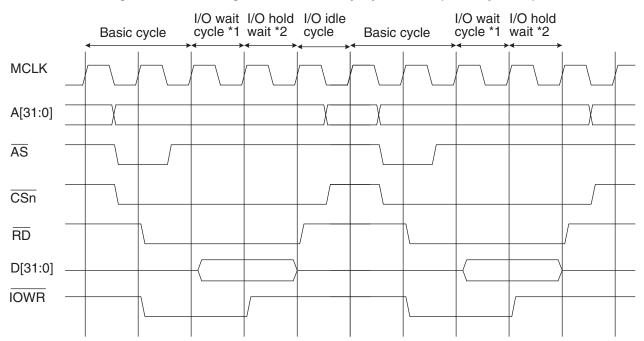
4.5.10 DMA Fly-By Transfer (I/O -> Memory)

This section shows the operation timing for DMA fly-by transfer (I/O -> memory).

■ Operation Timing for DMA Fly-By Transfer (I/O -> Memory)

Figure 4.5-10 "Timing Chart for DMA Fly-By Transfer (I/O -> Memory)" shows the operation timing for (TYP3-0= 0000_B , AWR= 0008_H , IOWR= 51_H). This timing chart shows a case in which a wait is not set on the memory side.

Figure 4.5-10 Timing Chart for DMA Fly-By Transfer (I/O -> Memory)


- Setting 1 for the HLD bit of the IOWR0-3 registers enables the I/O read cycle to be extended by one cycle.
- Setting bits IW3-0 of the IOWR0-3 registers enables 0-15 wait cycles to be inserted.
- If wait is also set on the memory side (AWR15-12 is not 0), the larger value is used as the wait cycle after comparison with the I/O wait (IW3-0 bits).

4.5.11 DMA Fly-By Transfer (Memory -> I/O)

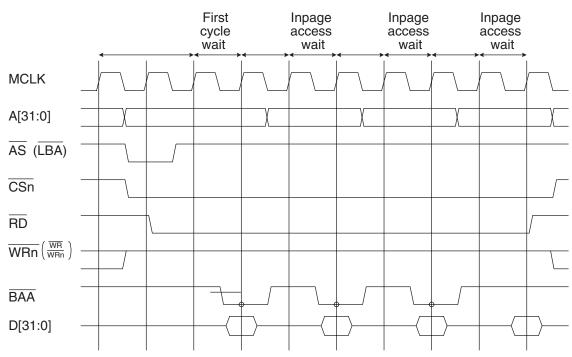
This section shows the operation timing for DMA fly-by transfer (memory -> I/O).

■ Operation Timing for DMA Fly-By Transfer (Memory -> I/O)

Figure 4.5-11 "Timing Chart for DMA Fly-By Transfer (Memory -> I/O)" shows the operation timing chart for (TYP3-0=0000_B, AWR=0008_H, IOWR=51_H). This timing chart shows a case in which a wait is not set on the memory side.

Figure 4.5-11 Timing Chart for DMA Fly-By Transfer (Memory -> I/O)

- Setting 1 for the HLD bit of the IOWR0,1 registers enables the I/O read cycle to be extended by one cycle.
- Setting the WR1,0 bits of the IOWR0,1 registers enables 0-3 write recovery cycles to be inserted.
- If the write recovery cycle is set to 1 or more, a write recovery cycle is always inserted after write access.
- Setting bits IW3-0 of the IOWR0,1 registers enables 0-15 wait cycles to be inserted.
- If wait is also set on the memory side (AWR15-12 is not 0), the larger value is used as the wait cycle after comparison with the I/O wait (IW3-0 bits).


4.6 Burst Access Operation

In the external bus interface, the operation that transfers successive data items in one access sequence is called burst access. The normal access cycle (that is, not burst access) is called single access. One access sequence starts with an assertion of $\overline{\text{AS}}$ and $\overline{\text{CSn}}$ and ends with negation of $\overline{\text{CSn}}$. Multiple data items two or more units of data of the unit set for the area.

This section explains burst access operation.

Burst Access Operation

Figure 4.6-1 "Timing chart for burst access" shows the operation timing chart for (first wait cycle=1, inpage access wait cycle=1, TYP3-0=0000_B, AWR=1108_H).

Figure 4.6-1 Timing Chart for Burst Access

- In addition to more efficient use of access cycles when a sizable amount of data of asynchronous memory such as page mode ROM and burst flash memory is read, burst cycles can also be used for reading from normal asynchronous memory.
- The access sequence when burst cycles are used can be divided into the following two types:
 - First access cycle

The first access cycle is the start cycle for the burst access and operates in the same way as the normal single access cycle.

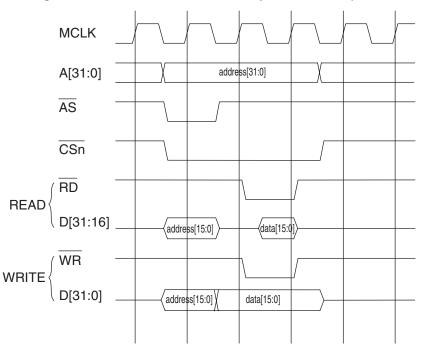
- Page access cycle

The page access cycle is a cycle following the first access cycle in which both $\overline{\text{CSn}}$ and $\overline{\text{RD}}$ (read strobe) are asserted. Wait cycles that are different from those set for a single cycle can be set. The page access cycle is repeated while access remains in the address

boundary determined by the burst length setting. When access within the address boundary ends, burst access terminates and $\overline{\text{CSn}}$ is negated.

- Setting of the W15-W12 bits of the AWR register enable the first 0-15 wait cycles to be inserted. At this point, the minimum number of the first access cycles is the wait cycles + 2 cycles (three cycles in the timing chart shown in Figure 4.6-1 "Timing Chart for Burst Access").
- Setting of the W11-W08 bits of the AWR register enables 0-15 page wait cycles to be inserted. At this point, the page access cycles can be obtained from the page wait cycles + 1 cycle (Two cycles in the timing chart shown in Figure 4.6-1 "Timing Chart for Burst Access")
- Setting of the BST bits of the ACR register enables the burst length to be set as 1, 2, 4, or 8. If the burst length is set to 1, single access mode is set and only the first cycle is repeated. However, if the data bus width is set to 32 bits (the BST bits of the ACR register are 10_B), set the burst length to 4 or less (A malfunction occurs if the burst length is set to 8).
- If burst access is enabled, burst access is used when prefetch access or transfer with a larger size than the specified data bus width is performed. For example, if word access to an area whose data bus width is set to 8 bits and burst length to 4 is performed, access of 4 bursts is performed once instead of repeating byte access four times.
- Since RDY input is ignored in areas for which burst access is set, do not set TYP3-0=0xx1_B.
- The LBA and BAA signals are designed for burst FLASH memory. LBA indicates the start of access and BAA indicates the address increment.
- A31-0 is updated after the wait cycles that were set during burst access.

4.7 Address/data Multiplex Interface

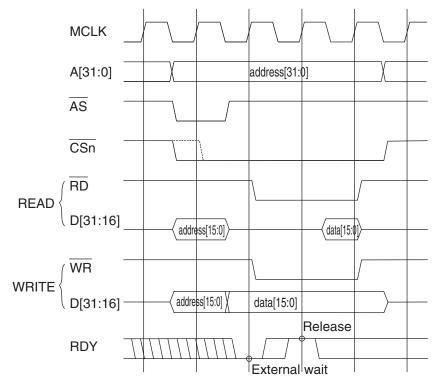

This section explains the following three cases of operation of the address/data multiplex interface:

- Without external wait
- With external wait
- CSn -> RD/WRn setup

Without External Wait

Figure 4.7-1 "Timing Chart for the Address/Data Multiplex Interface (without External Wait)" shows the operation timing chart for (TYP3-0=0100_B, AWR=0008_H).

- Making a setting such as TYP3-0=01xx_B in the ACR register enables the address/data multiplex interface to be set.
- If the address/data multiplex interface is set, set 8 bits or 16 bits for the data bus width (DBW1-0 bits).
- In the address/data multiplex interface, the total of 3 cycles of 2 address output cycles + 1 data cycle becomes the basic number of access cycles.
- In the address output cycles, AS is asserted as the output address latch signal.
- As with a normal interface, the address indicating the start of access is output to A31-0 during the time division bus cycle. Use this address if you want to use an address more than 8/16 bits in the address/data multiplex interface.

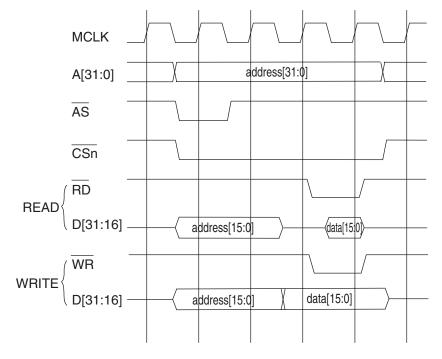

CHAPTER 4 EXTERNAL BUS INTERFACE

- As with the normal interface, auto-wait (AWR15-12), read -> write idle cycle (AWR7-6), write recovery (AWR5-4), address -> CSn delay (AWR2), CSn -> RD/WRn setup delay (AWR1), and RD/WRn -> CSn hold delay (AWR0) can be set.
- In areas for which the address/data multiplex interface is set, set 1(DBW1-0=00_B) as the burst length.

With External Wait

Figure 4.7-2 "Timing Chart for the Address/Data Multiplex Interface (with External Wait)" shows the operation timing chart for $(TYP3-0=0101_B, AWR=1008_H)$.

Figure 4.7-2 Timing Chart for the Address/Data Multiplex Interface (with External Wait)



Making a setting such as TYP3-0=01x1_B in the ACR register enables RDY input in the address/ data multiplex interface.

■ CSn -> RD/WRn Setup

Figure 4.7-3 "Timing Chart for the Address/Data Multiplex Interface ($\overline{CSn} \rightarrow \overline{RD}/\overline{WRn}$ Setup)" shows the operation timing chart for (TYP3-0=0101_B, AWR=100B_H).

Setting 1 for the $\overline{\text{CSn}} \rightarrow \overline{\text{RD}/\text{WRn}}$ setup delay (AWR1) enables the multiplex address output cycle to be extended by one cycle as shown in Figure 4.7-3 "Timing Chart for the Address/Data Multiplex Interface ($\overline{\text{CSn}} \rightarrow \overline{\text{RD}/\text{WRn}}$ Setup)", allowing the address to be latched directly to the rising edge of $\overline{\text{AS}}$. Use this setting if you want to use $\overline{\text{AS}}$ as an ALE (Address Latch Enable) strobe without using MCLK.

4.8 **Prefetch Operation**

This section explains the prefetch operation.

Prefetch Operation

The external bus interface controller contains a prefetch buffer consisting of 16 x 8 bits.

If the PSUS bit of the TCR register is 0 and read access to an area to which the PFEN bit of the ACR register is set to 1 occurs, the subsequent address is prefetched and then stored in the prefetch buffer.

If the stored address is accessed from the internal bus, the lookahead data in the prefetch buffer is returned without external access being performed. This can reduce the wait time for successive accesses to the external bus areas.

• Basic conditions for starting external access using prefetch

External bus access using prefetch occurs when the following conditions are met:

- The PSUS bit of the TCR register is 0.
- Neither sleep mode nor stop mode is set.
- Read access by the external bus to a chip select area for which prefetch is enabled has been performed. DMA access and read access by a read modified write system instruction, however, are excluded.
- No external bus access request (external bus area access to an area for which prefetch is not enabled or DMA transfer with an external bus area) other than the prefetch access has occurred.
- The part of the prefetch buffer for the next operation of capturing the prefetch access is completely empty.

While the above conditions are met, the prefetch access will continue. If external bus area access to an area for which prefetch is not enabled occurs after prefetch access, prefetch access to the area for which prefetch is enabled will continue as long as the prefetch buffer clear conditions are not met.

For an access that mixes multiple prefetch-enabled areas and multiple prefetch-disabled areas, the prefetch buffer always holds data of the prefetch-enabled area accessed last. Since, in this case, access to prefetch-disabled areas does not affect the prefetch buffer state at all, data in the prefetch buffer is not wasted even if prefetch-disabled data access and prefetch-enabled instruction fetch are mixed.

O Optional clear for temporary stopping of a prefetch access

Setting 1 for the PSUS bit of the TCR register temporarily stops a prefetch. The prefetch can be restarted by setting the PSUS bit to 0. At this point, the contents of the buffer are retained if no error occurs or a buffer clear such as occurs when the PCLR bit is set does not occur.

Setting 1 for the PCLR bit of the TCR register completely clears the prefetch buffer. Clear the buffer by setting the PSUS bit when prefetch is interrupted.

Prefetch is temporarily stopped for the minimum unit (64 KB) of the boundary=chip select area where the high-order 16 bits of an address change. If the boundary is crossed, first a buffer read error occurs and then prefetch starts in a new area.

• O Unit for one prefetch access operation

The unit for one prefetch access operation is determined by the DBW bits (bus width) and BST bits (burst length).

Prefetch access always occurs with the full size of the bus width specified by the DBW bits and access for the count of the burst length set by the BST bits in one access operation is performed. That is, if any value other than 00_B is set for the BST bits, the prefetch always occurs in page mode/burst mode. Keep in mind whether ROM/RAM is conformable and enough access time is applicable. (Set an appropriate value bits W15-08 bits of the AWR register).

During burst access, successive accesses occur only within the address boundary that that is determined by the burst length. Thus, if the boundary is crossed, for example, 4 bytes of free space are available in the buffer, these 4 bytes cannot be accessed in one operation (If the prefetch buffer starts at xxxxx0E_H, 4 bytes of free space are available in the buffer, and two bursts are set even though the bus width is 16 bits, only 2 bytes, xxxxx0E_H and xxxxx0F_H, can be captured in the next prefetch access).

The following provides two examples:

Area whose bus width is set to 16 bits and whose burst length is set to 2

The amount of data read into the buffer in one prefetch operation is 4 bytes. In this case, prefetch access is delayed until 4 bytes of free space are available in the prefetch buffer.

Area whose bus width is set to 8 bits and whose burst length is set to 8

The amount of data read into the buffer in one prefetch operation is 8 bytes. In this case, prefetch access is delayed until 8 bytes of free space are available in the prefetch buffer.

O Burst length setting and prefetch efficiency

If requests for external bus access, other than prefetch access, to or errors in the prefetch buffer occur during one operation of prefetch access as explained in the previous bullet, "Unit of one prefetch access operation," these access requests must wait until access to the prefetch buffer that is being executed is completed.

Thus, if the burst length is too long, the efficiency and reaction of bus access other than prefetch may be degraded. If, on the other hand, the burst length is set to 1, many read cycles may be wasted even if burst/page access memory is connected because single access is always performed.

If settings are made so that the amount of data read in one prefetch access operation is large, prefetch access can be started only after free space in the prefetch buffer for this amount is available. Thus, access to the prefetch buffer is infrequent, and the external bus tends to be idle. For example, if the bus width is set to 16 bits and the burst length is set to 8, the amount of data read into the buffer in one prefetch operation is 16 bytes. Thus, a new prefetch access can be started only after the prefetch buffer is completely empty.

Adjust the optimum burst length to suit use and the environment after taking the above into consideration. Generally, when connecting asynchronous memory to which burst/page access cannot be applied, it is best to set the burst length to 1 (single access). Conversely, when memory whose burst/page access cycle is short is connected, it is better to set the burst length to any value other than 1 (single access). In this case, it is best to make the setting so that 8 bytes (half of the buffer) are read in one read operation according to the bus width. However, the optimum condition varies with the frequency of external access and varies with the frequency divide-by rate setting of the external access clock.

O Reading from the prefetch buffer

Data stored in the prefetch buffer is read in response to access from the internal bus if an address matches, and no external access is performed. In reading from the buffer, addresses can be hit (up to 16 bytes) if they are in the forward direction but not continuous, so that a second read from the external bus is avoided, if possible, even for a short forward branch.

If the address currently being accessed for prefetch matches during access from the internal bus, a wait signal is returned internally before data is captured after prefetch access is completed. In this case, no buffer error occurs.

If an address in the prefetch buffer matches when a read is performed for DMA transfer, data in the prefetch buffer is not used, and instead, external data is read by the external bus. In this case, a buffer error occurs. The prefetch is not continued and no prefetch access is performed until a new external access operation to a prefetch-enabled area occurs.

O Clearing/updating the prefetch buffer

If either of the following conditions is met, the prefetch buffer is completely cleared:

- If 1 is written to the PCLR bit of the TCR register
- If a buffer read error occurs. A buffer read error is if any of the following events occurs:
 - When no address is found in the buffer that matches in an to read from a prefetchenabled area. In this case, the external bus is accessed again. Data read in this case is not stored in the buffer, but the prefetch access is started from the subsequent address to store addresses in the buffer.
 - In an access to read from a prefetch-enabled area with a read modified system instruction. In this case, the external bus is accessed again. Data read in this case is not stored in the buffer. Also, no prefetch access is performed (This is because data is written to the next address).
 - In an access to read from a prefetch-enabled area for DMA transfer. In this case, the external bus is accessed again. Data read in this case is not stored in the buffer. Also, no prefetch access is performed.
- If a buffer write hit occurs. A buffer write hit is as follows:
 - When the address of just one byte that matches is found in the buffer in an access to write to a prefetch-enabled area. In this case, the external bus is accessed again, but no prefetch access is performed before a new read access occurs.

Only part of the prefetch buffer is cleared when the following condition is met:

• If a buffer read hit occurs

In this case, only the part of the buffer before the hit address is cleared.

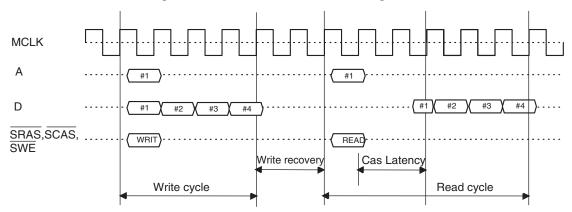
O Restrictions on prefetch-enabled areas

If prefetch to a little endian area is enabled, be sure to access the area using word access. If data read into the prefetch buffer is accessed with any length other than word length, the correct endian conversion is not performed and thus the wrong data will be read. This is due to hardware restrictions related to the endian conversion mechanism.

4.9 SDRAM/FCRAM Interface Operation

This section describes the operations of the SDRAM/FCRAM interface.

SDRAM/FCRAM interface


The CS6 and CS7 areas can be used as SDRAM/FCRAM space by setting the TYP3 to TYP0 bits in the area configuration register (ACR) to $100X_B$.

This section provides timing charts to describe the following operations of the SDRAM/FCRAM interface.

- Burst read/write (Settings: Page hit, CAS latency 2)
- Single read/write (Settings: Page hit, CAS latency 3, auto precharge OFF)
- Single read (Settings: Page miss, CAS latency 3, auto precharge OFF)
- Single read/write (Settings: CAS latency 1, TYP 1001_B, auto precharge ON)
- Auto refresh

Burst Read/Write Operation Timing

Figure 4.9 - 1 shows the operation timings assuming that page hits and CAS latency 2 are set.

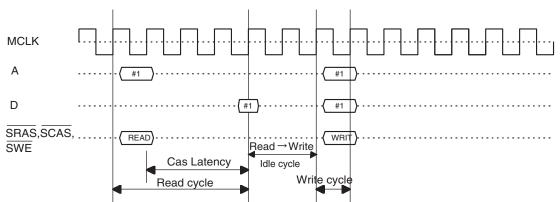


Figure 4.9-1 Burst Read/Write Timing Chart

- All of the A13 to A0 pins may not be used depending on the SDRAM capacity. See Section "4.9.5 Memory Connection Examples " .
- The MCLK is a clock signal input to SDRAM. Signals such as addresses, data, and commands are input to SDRAM at the rise of the MCLK.
- Set the W05 and W04 bits in the area wait register (AWR) to the write recovery cycle according to the SDRAM/FCRAM standards.
- Set the W10 to W08 bits in the area wait register (AWR) to the CAS latency according to the SDRAM/FCRAM standards.
- Set the burst length using the BST bit in the area configuration register (ACR).

Single Read/Write Operation Timing

Figure 4.9-2 shows the operation timings assuming that page hits, CAS latency 3, and no auto - precharge are set.

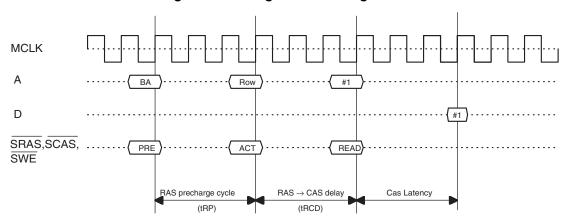


Figure 4.9-2 Single Read/Write Timing Chart

Set the W07 and W06 bits in the area wait register (AWR) to the read - to - write idle cycle according to the SDRAM/FCRAM standards.

Single Read Operation Timing

Figure 4.9-3 shows the operation timings assuming that page misses, CAS latency 3, and no auto - precharge are set.

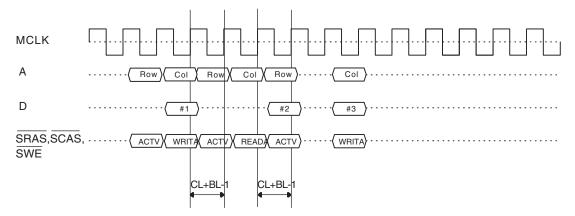


Figure 4.9-3 Single Read Timing Chart

- When a page miss occurs, a read operation is performed after the PRE charge and ACTV commands are issued.
- Set the W01 and W00 bits in the area wait register (AWR) to the RAS precharge cycle (tRP) according to the SDRAM/FCRAM standards.
- Set the W14 to W12 bits in the area wait register (AWR) to the RAS to CAS delay (tRCD) according to the SDRAM/FCRAM standards.

Single Read/Write Operation Timing

Figure 4.9-4 shows the operation timings assuming that CAS latency 1, TYP = 1001_B , and auto - precharge are set.

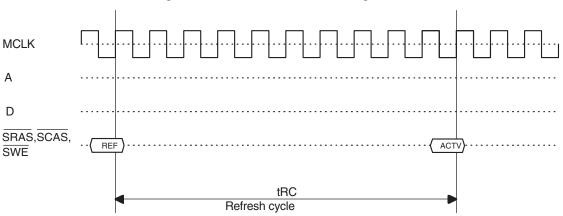


Figure 4.9-4 Single Read/Write Timing Chart

- Setting TYP to 1001_B causes a read/write command with auto precharge to be issued. Since the cycle from READA/WRITA issuance to ACTV issuance is fixed at CL + BL - 1, however, TYP can be set to 1001_B only when FCRAM is connected.
- This timing is effective, for example, for recurring page misses as it eliminates the cycle for issuing the PRE command.

Auto - refresh Operation Timing

Figure 4.9-5 shows auto - refresh operation timings.

Figure 4.9-5 Auto - refresh Timing Chart

- The refresh command is issued every " refresh control register's (RCR's) RFINT5 RFINT0 value x 32 " cycles and access is restarted upon completion of each refresh.
- Set the TRC bit in the refresh control register (RCR) according to the SDRAM/FCRAM standards.
- Satisfy the maximum RAS active time as well.

4.9.1 Self Refresh

This section describes self - refreshing.

Self Refresh

Writing 1 to the SELF bit in the refresh control register (RCR) causes the SDRAM/FCRAM interface to initiate the self - refresh transition sequence.

After executing auto - refreshing the number of times set in the RFC2 to RFC0 bits, the SDRAM/ FCRAM interface issues the SELF command to SDRAM/FCRAM to enter the self - refresh mode.

The device is released from the self - refresh mode either when 0 is written to the SELF bit or read/write access to SDRAM/FCRAM occurs.

The SDRAM/FCRAM interface issues the SELFX command to execute auto - refreshing the number of times set in the RFC2 to RFC0 bits upon detection of writing 0 to the SELF bit or access to SDRAM/FCRAM in the self - refresh mode.

Even when access to SDRAM/FCRAM by DMA transfer occurs after setting the self - refresh mode and putting the chip into sleep mode, the self - refresh mode is canceled.

O Self - refresh mode transition procedure

- 1. Set SELF bit to "1".
- 2. Issue the REF command the number of times set in the RFC2 to RFC0 bits.
- 3. Issue SELF command

O Self - refresh mode reset procedure

- 1. Set the SELF bit to 0 or access to SDRAM/FCRAM.
- 2. Issue SELFX command
- 3. Issue the REF command the number of times set in the RFC2 to RFC0 bits.
- 4. Transition to the normal access state

4.9.2 Power-on Sequence

This section describes the power - on sequence.

Power-on Sequence

Setting the PON bit in the refresh control register (RCR) to 1 initiates the power - on sequence. Take the following steps to set the PON bit to 1 for transition to the power - on sequence.

- 1. Reserve the clock stabilization wait time specified in the SDRAM/FCRAM manual.
- 2. Set ACR, AWR, MCRA(B).
- 3. Set the CSER to enable the area to which SDRAM/FCRAM has been connected.
- 4. Set the PON bit to 1 while setting the RCR value.

Taking the above steps causes the SDRAM/FCRAM interface to execute the following power - on sequence.

- 5. Execute the PALL command.
- 6. Execute the REF command eight times.
- 7. The mode register is set according to the BST bit in the ACR, CL (CAS Latency) bit in the AWR, and the WBST bit in the MCRA.
- 8. Transition to the normal access state

4.9.3 Connecting SDRAM/FCRAM to Many Areas

This section shows the connecting SDRAM/FCRAM to many areas.

Connecting SDRAM/FCRAM to Many Areas

SDRAM/FCRAM can be set for $\overline{CS6}$ and $\overline{CS7}$ areas. When connecting SDRAM/FCRAM to two areas, connect the same type of modules.

More precisely, connect the modules common in the following register settings.

- Area configuration register (ACR): Set all of the DBW1 DBW0, BST1 BST0, and TYP3 -TYP0 bits to the same.
- Area wait register (AWR): Set all the bits to the same.
- Memory setting register (MCR): All the settings are the same as the registers are common.)
- Refresh control register (RCR): All the settings are the same as the registers are common.)

To enable the two areas at a time, execute the power - on sequence, auto - refresh, and self - refresh at the same time.

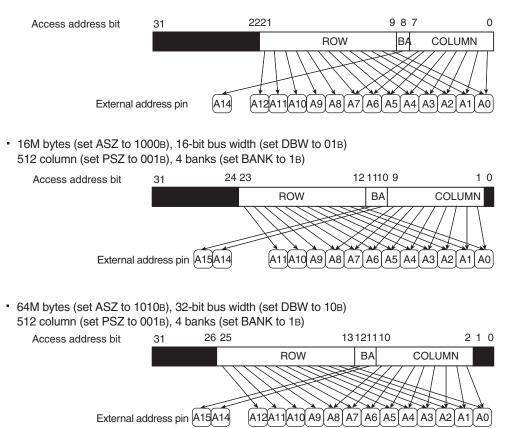
4.9.4 Address Multiplexing Format

This section describes the address multiplexing format.

Address Multiplexing Format

SDRAM/FCRAM access addresses correspond to row, bank, and column addresses differently depending on the settings of the ASZ3 to ASZ0, DBW1 and DBW0, PSZ2 to PSZ0, and BANK bits.

Addresses are arranged in the order of Column, BANK, and Row addresses, starting from the least significant bit.


Set each bit as shown below.

- ASZ3 to ASZ0 bits: Set these bits to the total amount of SDRAM/FCRAM connected to the corresponding area. For using two modules in parallel, set the total amount. Affects the number of row addresses.
- DBW1 and DBW0 bits: Set these bits to the data bus width. (Set the bits to "16 bits " for connecting a pair of eight bit modules in parallel.) Column addresses are shifted according to the data bus width setting. 8 bits: Do not shift. 16 bits: Shift one bit. 32 bits: Shift two bits.
- PSZ2 to PSZ0 bits: Set these bits to the number of column addresses used for SDRAM/ FCRAM.
- BANK bit: Set this bit to the number of SDRAM/FCRAM bank addresses.

Figure 4.9 - 6 shows examples of combinations of access addresses and Row/BANK/Column addresses.

Figure 4.9-6 Examples of combinations of access addresses and Row/BANK/Column addresses

 4M bytes (set ASZ to 0110B), 8-bit bus width (set DBW to 00B) 256 column (set PSZ to 000B), 2 banks (set BANK to 0B)

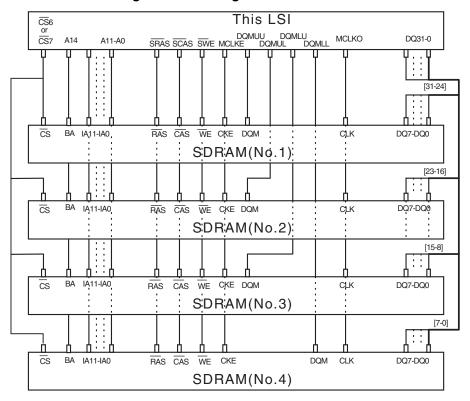
4.9.5 Memory Connection Example

This section shows the memory connection example.

Memory Connection Example

The SDRAM/FCRAM interface is connected to SDRAM/FCRAM as shown in Table 4.9 - 1 in principle.

Table 4.9-1 SDRAM/FCRAM Interface to SDRAM/FCRAM Connection Table


SDRAM/ FCRAM interface pin	SDRAM/ FCRAM pin	Remarks
MCLKO	CLK	
MCLKE	CKE	
SRAS (AS)	RAS	
SCAS (BAA)	CAS	
SWE (WR)	WE	
CS6 or CS7	CS	Only the CS6/CS7 area can be set as SDRAM/FCRAM space.
A0 to A9	A0 to A9	Addresses do not have to be shifted depending on the bus width.
A10/AP	A10/AP	A10 for row address output; otherwise AP
A11 to A13	A11 to A13	Connected to the address used for SDRAM/FCRAM.
A14	BA0	BA for 2 bank product
A15	BA1	The pin is not used for a two - bank module.
D31 to D0	DQ	The connection changes depending on the endian method and data bus width. For detailed connection, see Section " 4.4 Endian and Bus Access " .
DQMUU, DQMUL, DQMLU, DQMLL	DQM	The connection changes depending on the endian method and data bus width. For detailed connection, see Section " 4.4 Endian and Bus Access " .

○ Using 8 - bit SDRAM/FCRAM (Big endian)

Total data bus width of 32 bits: Use four SDRAM/FCRAM modules.

Total data bus width of 16 bits: Use two SDRAM/FCRAM modules.

Figure 4.9-7 shows how to use 64 - Mbit SDRAM (one bank address and 12 row addresses).

Figure 4.9-7 Using 64 - Mbit SDRAM


When SDRAM modules are used with a total data width of 16 bits, SDRAMs No. 3 and No. 4 are not required and DQ15 to DQ0 must be left open.

O Using 16 - bit SDRAM/FCRAM

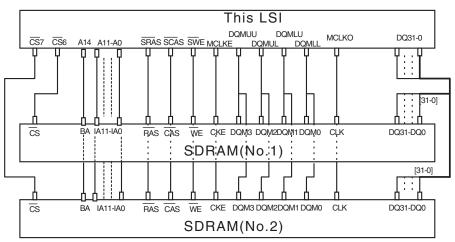
Total data width of 32 bits: Use two or four SDRAM modules.

Total data width of 16 bits: Use one or two SDRAM modules.

Figure 4.9-8 shows how to use 64-Mbit SDRAM (two bank addresses and 12 row addresses).

Figure 4.9-8 Using 64 - Mbit SDRAM

When using one SDRAM module with a data width of 16 bits, SDRAMs No. 2, No. 3, and No. 4 are not required and DQ15 to DQ0 must be left open.


When two SDRAM modules are used with a data width of 16 bits, SDRAMs No. 2 and No. 4 are not required.

When two SDRAM modules are used with a data width of 32 bits, SDRAMs No. 3 and No. 4 are not required.

○ Using 32 - bit SDRAM

When the data width is 32 bits: Use one or two SDRAM modules.

Figure 4.9-9 shows 64-Mbit SDRAM (one bank address and 12 row addresses).

SDRAM No. 2 is not required when the device is used with only one SDRAM module.

4.10 DMA Access Operation

This section explains DMA access operation.

DMA Access Operation

This section explains the following five DMA operations:

- DMA fly-by transfer (I/O -> memory)
- DMA fly-by transfer (memory -> I/O)
- 2-cycle transfer (internal RAM -> I/O, RAM)
- 2-cycle transfer (external -> I/O)
- 2-cycle transfer (I/O -> external)

4.10.1 DMA Fly-By Transfer (I/O -> Memory)

This section explains DMA fly-by transfer (I/O -> memory).

DMA Fly-By Transfer (I/O -> Memory)

Figure 4.10-1 "Timing Chart for DMA Fly-By Transfer (I/O -> Memory)" shows the operation timing chart for (TYP3-0=0000_B, AWR=0008_H, IOWR=41_H).

Figure 4.10-1 "Timing Chart for DMA Fly-By Transfer (I/O -> Memory)" shows when case when a wait is not set on the memory side.

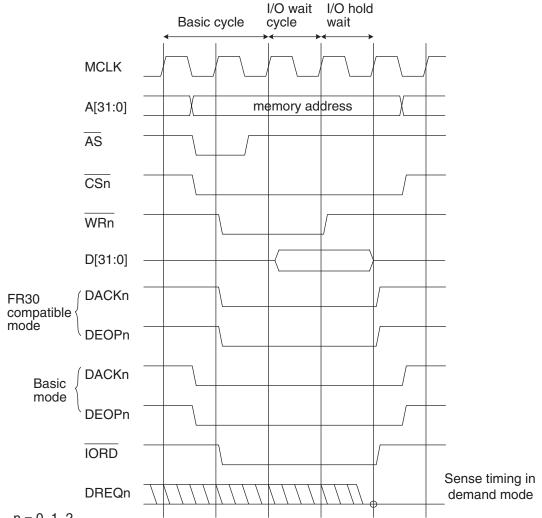


Figure 4.10-1 Timing Chart for DMA Fly-By Transfer (I/O -> Memory)

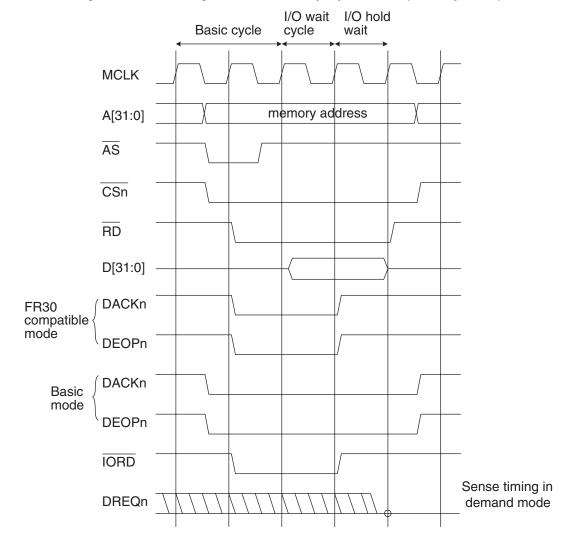
n = 0, 1, 2

- Setting 1 for the W01 bit of the AWR register enables the CSn -> RD/WRn setup delay to be set. Set this bit to extend the period between assertion of chip select and the read/write strobe.
- Setting 1 for the W00 bit of the AWR register enables the RD/WRn -> CSn hold delay to be set. Set this bit to extend the period between negation of the read/write strobe and negation of chip select.

- nThe CSn -> RD/WRn setup delay (W01 bit) and RD/WRn -> CS hold delay (W00 bit) can be set independently.
- When successive accesses are made within the same chip select area without negating the chip select, neither CSn -> RD/WRn setup delay nor RD/WRn -> CSn hold delay is inserted.
- If a setup cycle for determining the address or a hold cycle for determining the address is needed, set 1 for the address -> CSn delay setting (W02 bit of the AWR register).

For I/O on the data output side, a read strobe of three bus cycles extended by the I/O wait cycle and I/O hold wait cycle is generated. For memory on the receiving side, a write strobe of two bus cycles extended by the I/O wait cycle is generated. The I/O hold wait cycle does not affect the write strobe. However, the address and CS signal are retained until the fly-by bus access cycles end.

4.10.2 DMA Fly-By Transfer (Memory -> I/O)


This section explains DMA fly-by transfer (memory -> I/O).

■ DMA Fly-By Transfer (Memory -> I/O)

Figure 4.10-2 "Timing chart for DMA Fly-By Transfer (Memory -> I/O)" shows the operation timing chart for (TYP3-0=0000_B, AWR=0008_H, IOWR=41_H).

Figure 4.10-2 "Timing chart for DMA Fly-By Transfer (Memory -> I/O)" shows a case in which a wait is not set on the memory side.

- Setting 1 for the HLD bit of the IOWR0-3 registers extends the I/O read cycle by one cycle.
- Setting bits WR1-0 bits of the IOWR0-3 registers enables 0-3 write recovery cycles to be inserted.
- If the write recovery cycle is set to 1 or more, a write recovery cycle is always inserted after write access.
- Setting bits IW3-0 of the IOWR0-3 registers enables 0-15 wait cycles to be inserted.

• If wait is also set on the memory side (AWR15-12 is not 0), the larger value is used as the wait cycle after comparison with the I/O wait (IW3-0 bits).

Reference:

For memory on the data output side, a read strobe of three bus cycles extended by the I/O wait cycle and I/O hold wait cycle is generated. For I/O on the receiving side, a write strobe of two bus cycles extended by the I/O wait cycle is generated. The I/O hold wait cycle does not affect the write strobe. However, the address and CS signal are retained until the fly-by bus access cycles end.

4.10.3 DMA Fly-By Transfer (I/O -> SDRAM/FCRAM)

This section describes the operation of DMA fly - by transfer (I/O device to SDRAM/ FCRAM).

■ DMA Fly-By Transfer (I/O -> SDRAM/FCRAM)

Figure 4.10 - 3 shows an operation timing chart assuming TYP3 to TYP0 set to 1000B, AWR set to 0051H, and IOWR set to 41H.

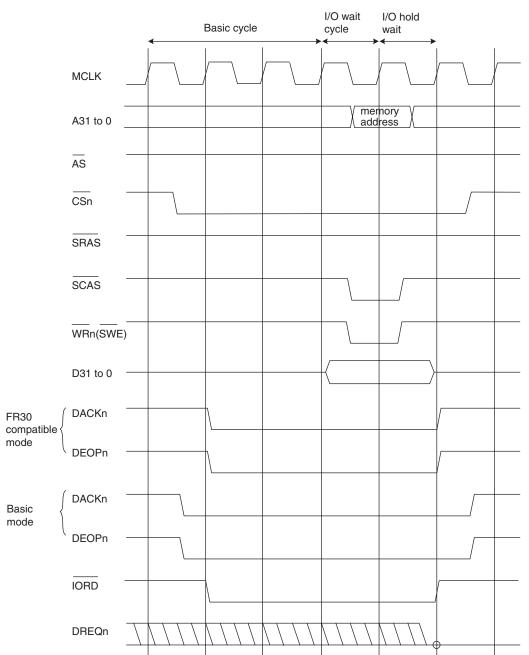
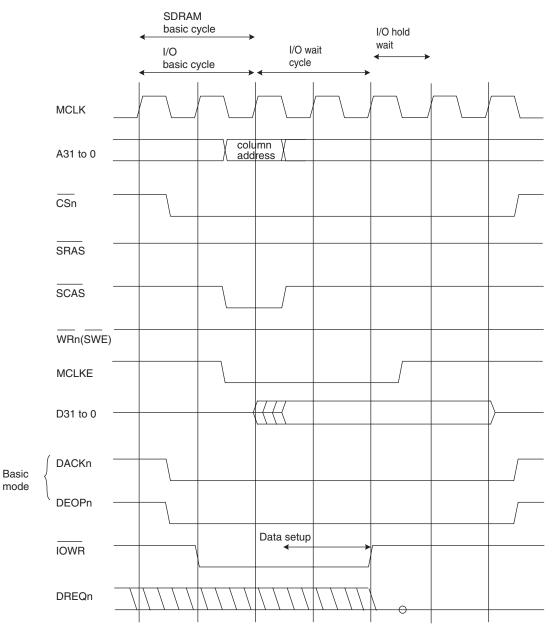


Figure 4.10-3 Timing Chart for DMA Fly - by Transfer (I/O to SDRAM/FCRAM)

- For the I/O device on the data output side, a read strobe of three bus cycles extended by the I/O wait cycle and I/O hold wait cycle is generated.
- For SDRAM/FCRAM on the receiving side, a WRIT command is issued at the timing that allows writing after the I/O wait cycle. The I/O wait cycle may be longer depending on the SDRAM/FCRAM bank active state and SDRAM/FCRAM wait setting.
- The I/O hold wait cycle does not affect the write strobe. Note, however, that the CS signal is
 retained until the fly by bus access cycles end.
- For fly by transfer from an I/O device to SDRAM/FCRAM, be sure to set the HLD bit in the DMAC I/O wait register (IOWR) to 1 to enable the I/O hold wait cycle.
- Fly by transfer must always be performed between data buses having the same bus width.

4.10.4 DMA Fly-By Transfer (SDRAM/FCRAM -> I/O)

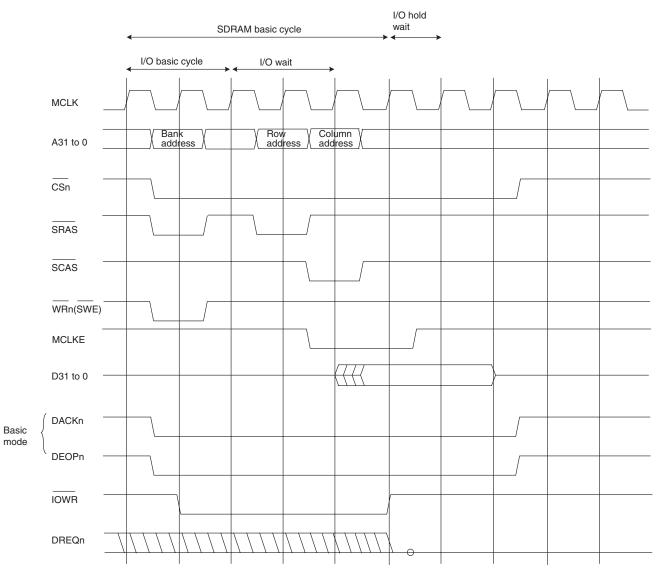

This section describes the operation of DMA fly - by transfer (SDRAM/FCRAM device to I/O).

■ DMA Fly-By Transfer (SDRAM/FCRAM -> I/O)

Figure 1.10 - 4 shows an operation timing chart assuming TYP3 to TYP0 set to 1000B, AWR set to 0051H, and IOWR set to 42H.

• At SDRAM page hit (Shortest)

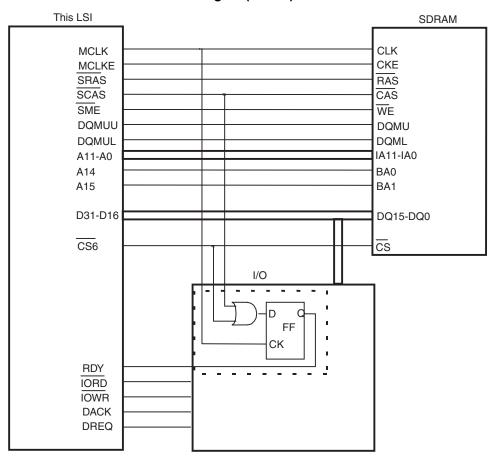
Figure 4.10-4 Timing Chart for DMA Fly - by Transfer (SDRAM/FCRAM to I/O) with Page Hits (Shortest)



If SDRAM access is shorter than I/O access, the SDRAM access is extended by the I/O access (base access plus I/O wait).

Figure 4.10 - 5 shows an operation timing chart assuming TYP3 to TYP0 set to 1000B, AWR set to 0051H, and IOWR set to 42H.

O At SDRAM page misses



- If SDRAM access is extended, for example, by precharging when a page miss occurs in reference to SDRAM, the SDRAM access exceeds the set I/O access, so that the I/O access is extended to be longer than the SDRAM access. When the I/O device requires data setup, therefore, the I/O wait cycle must be set such that I/O access is longer than the maximum SDRAM access cycle. For the above settings, set the number of I/O wait cycles to at least 4.
- For SDRAM/FCRAM on the data output side, a READ command is issued at the timing that satisfies the I/O wait cycle. If the I/O hold cycle has been set, then, a DESL command is issued to insert the I/O hold cycle in the cycle immediately followed by the

- For the I/O device on the receiving side, a write strobe of two bus cycles extended by the I/O wait cycle is generated.
- The I/O hold wait cycle does not affect the write strobe.
- Fly by transfer must always be performed between data buses having the same bus width.
- When the I/O wait cycle is used to reserve data setup time, the I/O wait value must be set according to the page miss condition. A page hit therefore generates a penalty. If this penalty generated at a page hit causes a problem, prepare an external circuit as illustrated in Figure 4.10 - 6c to use an external wait cycle based on the CAS signal, thereby extending I/O access to reserve data setup time.

Figure 4.10-6 Sample Circuit Solving a Fly - by Penalty Using External Wait Cycles Based on the CAS Signal (CL = 2)

Note:

- For CL = 3, provide two stages of MCLK based FF to cause a delay of another cycle.
- If any device requires an external wait cycle, add a logic gate to the RDY signal as required.

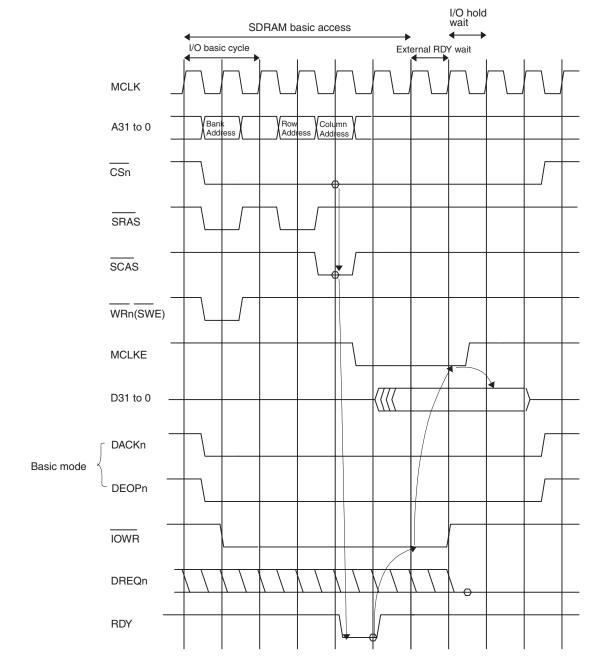


Figure 4.10-7 Timing Chart for Fly - by Penalty Solution Using External Wait Cycles Based on the CAS Signal (CL = 2)

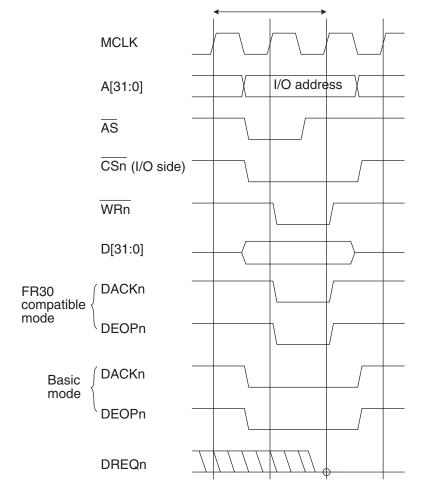
The rise of the IOWR signal can be delayed one cycle by extending SDRAM read access one cycle when the signal resulting from OR (negative - logic AND) operation of the CAS signal and the chip select signal for the SDRAM area subject to transfer is input t

As the external wait signal is generated based on the CAS signal rise timing in this case, the data setup time from the SDRAM data output to the I/O device can be reserved for one cycle, regardless of a page hit or miss in SDRAM.

Set the external wait using the RYE0 and RYE1 bits in the DMAC I/O wait register such that the RDY function of the DMA fly - by access channel to be used is enabled.

When the CAS latency is 3, SDRAM data output is delayed one cycle. Add one stage of FF by the MCLK to input the signal delayed one cycle from the above diagram to the RDY pin.

4.10.5 2-Cycle Transfer (Internal RAM -> External I/O, RAM)


This section explains 2-cycle transfer (internal RAM -> external I/O, RAM) operation. The timing is the same as for external I/O, RAM -> internal RAM.

■ 2-Cycle Transfer (Internal RAM -> External I/O, RAM)

Figure 4.10-8 "Timing Chart for 2-cycle Transfer (Internal RAM -> External I/O, RAM)" shows the operation timing chart for $(TYP3-0=0000_B, AWR=0008_H, IOWR=00_H)$.

Figure 4.10-8 "Timing Chart for 2-cycle Transfer (Internal RAM -> External I/O, RAM)" shows a case in which a wait is not set on the I/O side.

- The bus is accessed in the same way as an interface when DMAC transfer is not performed.
- DACKn/DEOPn is not output in the internal RAM access cycles.

4.10.6 2-Cycle Transfer (External -> I/O)

This section explains 2-cycle transfer (external -> I/O) operation.

■ 2-Cycle Transfer (External -> I/O)

Figure 4.10-9 "Timing Chart for 2-Cycle Transfer (External -> I/O" shows the operation timing chart for (TYP3-0=0000_B, AWR=0008_H, IOWR=00_H).

Figure 4.10-9 "Timing Chart for 2-Cycle Transfer (External -> I/O" shows a case in which a wait is not set for memory and I/O.

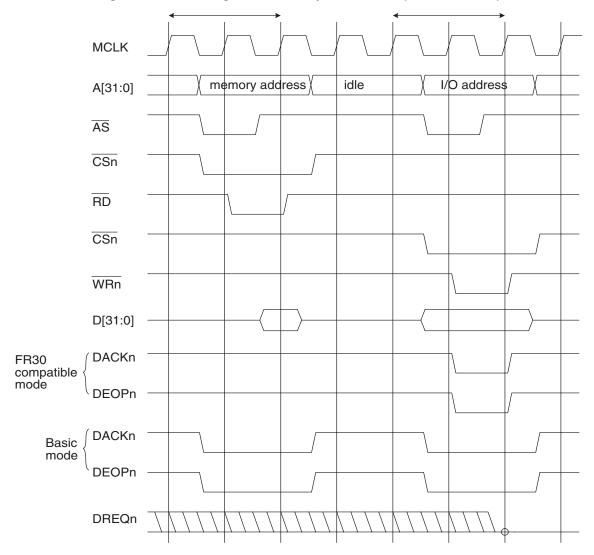


Figure 4.10-9 Timing Chart for 2-Cycle Transfer (External -> I/O)

- The bus is accessed in the same way as an interface when the DMAC transfer is not performed.
- In basic mode, DACKn/DEOPn is output in both transfer source bus access and transfer destination bus access.

4.10.7 2-Cycle Transfer (I/O -> External)

This section explains 2-cycle transfer (I/O -> external) operation.

■ 2-Cycle Transfer (I/O -> External)

Figure 4.10-10 "Timing Chart for 2-Cycle Transfer (I/O -> External)" shows the operation timing chart for (TYP3-0= 0000_B , AWR= 0008_H , IOWR= 00_H).

Figure 4.10-10 "Timing Chart for 2-Cycle Transfer ($I/O \rightarrow External$)" shows a case in which a wait is not set for memory and I/O.

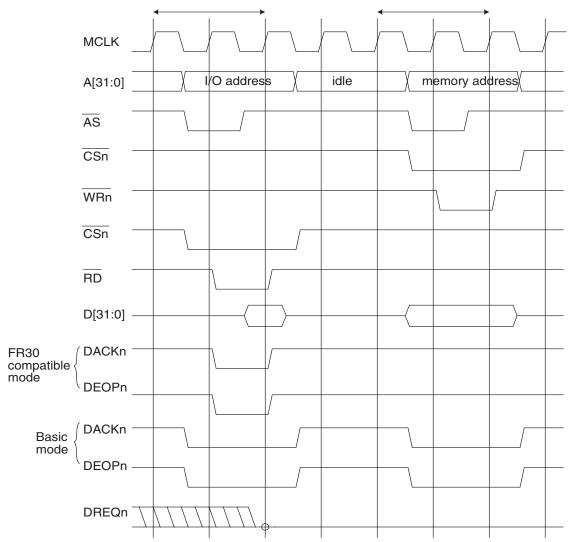


Figure 4.10-10 Timing Chart for 2-Cycle Transfer (I/O -> External)

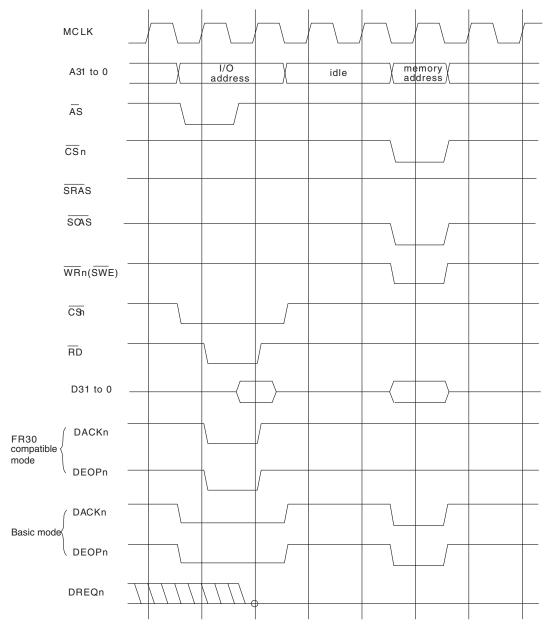
- The bus is accessed in the same way as an interface when the DMAC transfer is not performed.
- In basic mode, DACKn/DEOPn is output both in the transfer source bus access and transfer destination bus access.

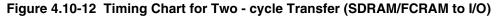
4.10.8 2-Cycle Transfer (I/O -> SDRAM/FCRAM)

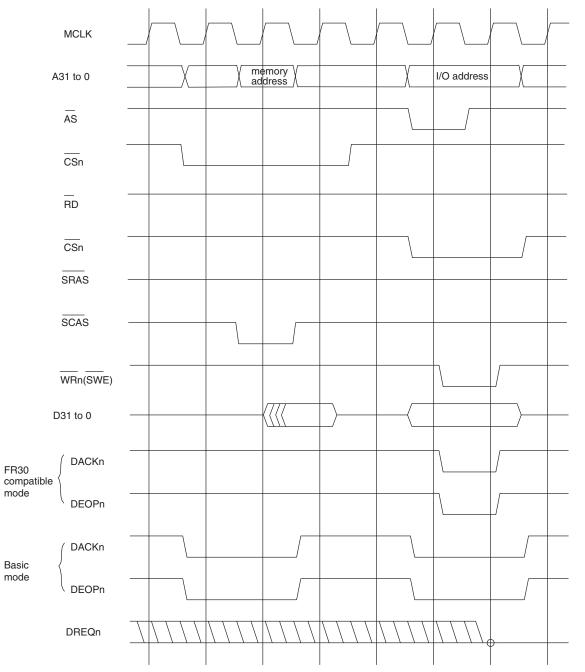
This section describes the operation of two - cycle transfer (I/O device to SDRAM/ FCRAM).

■ 2-Cycle Transfer (I/O -> SDRAM/FCRAM)

Figure 4.10 - 11 shows an operation timing chart assuming TYP3 to TYP0 set to 1000B, AWR set to 0051H, and IOWR set to 00H.




Figure 4.10-11 Timing Chart for Two - cycle Transfer (I/O to SDRAM/FCRAM)


4.10.9 2-Cycle Transfer (SDRAM/FCRAM -> I/O)

This section describes the operation of two - cycle transfer (SDRAM/FCRAM to I/O device).

■ 2-Cycle Transfer (SDRAM/FCRAM -> I/O)

Figure 1.10 - 12 shows a timing chart for two - cycle transfer (SDRAM/FCRAM to I/O)

- Bus access is the same as that of the interface for non DMA transfer.
- In base mode, DACKn/DEOPn is output at both of transfer source bus access and transfer destination bus access.

4.11 Bus Arbitration

This section shows timing charts for releasing the bus right and for acquiring the bus right.

Releasing the Bus Right

Figure 4.11-1 "Timing Chart for Releasing the Bus Right" shows the timing chart for releasing the bus right. Figure 4.11-2 "Timing Chart for Releasing the Bus Right" shows the timing chart for acquiring the bus right.

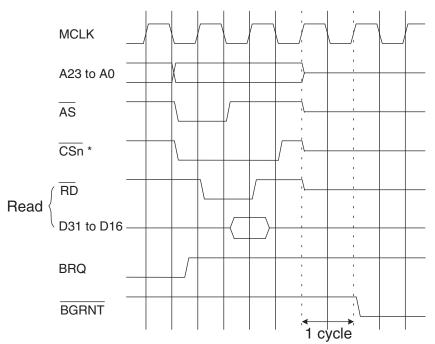


Figure 4.11-1 Timing Chart for Releasing the Bus Right

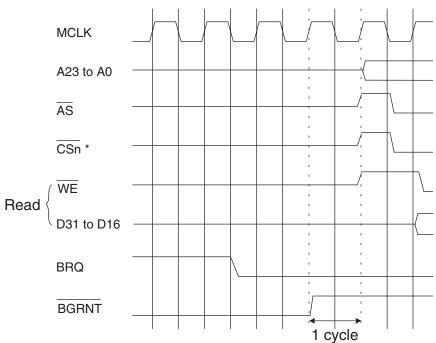


Figure 4.11-2 Timing Chart for Acquiring the Bus Right

- Setting 1 for the BREN bit of the TRC register enables bus arbitration by BRQ/BGRNT to be performed.
- When the bus right is released, the pin is set to high impedance and then BGRNT is asserted one cycle later.
- When the bus right is acquired, BGRNT is negated and then each pin is activated one cycle later.
- CSn is set to high impedance only if the SREN bit in the ACR0-7 registers is set.
- If all areas enabled by the CSER register are shared (the SREN bit of the ACR register is 1), AS, BAA, RD, WE, and WR0-WR3 are set to high impedance.

4.12 **Procedure for Setting a Register**

This section explains the procedure for setting a register.

Procedure for Setting a Register

Using the following procedures to make external bus interface settings:

- 1. Before rewriting the contents of a register, be sure to set the CSER register so that the corresponding area is not used (0). If you change the settings while 1 is set, access before and after the change cannot be guaranteed.
- 2. Use the following procedure to change a register:
 - Set 0 for the CSER bit corresponding to the applicable area.
 - Set both ASR and ACR at the same time using word access.
 - Set AWR.
 - Set the CHER bit corresponding to the applicable area.
 - Set the CSER bit corresponding to the applicable area.
- 3. The CSO area is enabled after a reset is released. If the area is used as a program area, the register contents need to be rewritten while the CSER bit is 1. In this case, make the settings described in 2) to 4) above in the initial state with a low-speed internal clock. Then, switch the clock to a high-speed clock.
- 4. Use the following procedure to change the register value in an area for which prefetch:
 - Set 0 for the bit of CSER corresponding to the applicable area.
 - Set 1 for both the PSUS bit and PCLR bit of the TCR register.
 - Set both ASR and ACR at the same time using word access.
 - Set AWR.
 - Set the CHER bit corresponding to the applicable area.
 - Set 0 for both the PSUS bit and PCLR bit of the TCR register.
 - Set 1 for the bit of CSER corresponding to the applicable area.

4.13 Notes on Using the External Bus Interface

This section explains some notes when using the external bus interface.

Notes for Use

If settings are made so that the area (TYP3-0=0x0x_B) where $\overline{WR0}$ - $\overline{WR3}$ are used as a write strobe and the area (TYP3-0=0x1x_B) where \overline{WR} is used as a write strobe are mixed, be sure to make the following setting in all areas that will be used:

- Set at least one read -> write idle cycle (other than AWR W07-W06=00_B).
- Set at least one write recovery cycle (other than AWR W05-W04=00_B).

However, if $\overline{\text{WR0}}$ - $\overline{\text{WR3}}$ are disabled (ROM only is connected) in the area (TYP3-0=0x0x_B) where $\overline{\text{WR0}}$ - $\overline{\text{WR3}}$ are used as a write strobe, the above restriction does not apply. Also, the above restriction does not apply if both the address -> $\overline{\text{RD}}/\overline{\text{WRn}}$ setup cycle (W01=1) and $\overline{\text{RD}}/\overline{\text{WRn}}$ -> address hold cycle (W00=1) are set in the area (TYP3-0=0x1x_B) where $\overline{\text{WE}}$ is used as a write strobe.

CHAPTER 4 EXTERNAL BUS INTERFACE

CHAPTER 5 I/O PORT

This chapter describes the I/O ports and the configuration and functions of registers.

- 5.1 "Overview of the I/O Ports"
- 5.2 "I/O Port Registers"

5.1 Overview of the I/O Port

This section provides an overview of the I/O port.

Basic Block Diagram of the I/O Port

The MB91301 series interface can be used as an I/O port if settings are made so that the external bus interface or peripherals corresponding to pins do not use the pins as input/output pins.

Figure 5.1-1 shows the basic configuration of the I/O port.

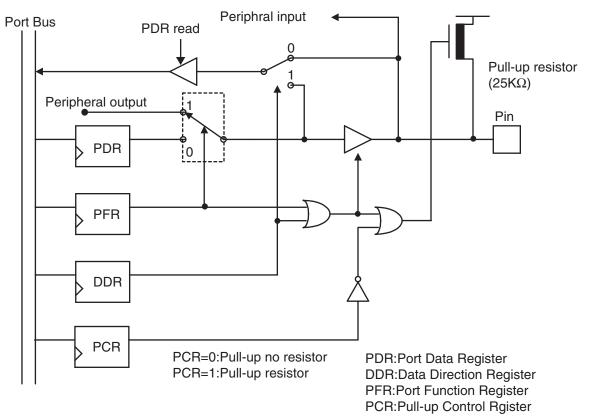


Figure 5.1-1 Port Block with pull-up

Note:

The I/O port consists of PDRs (Port Data Registers), DDRs (Data Direction Registers), PFRs (Port Function Registers) and PCR (Pull-up Control Registers).

■ I/O Port Modes

The I/O port has the following three modes:

○ Port input mode (PFR=0 & DDR=0)

- PDR read: Reads the level of the corresponding external pin.
- PDR write: Writes a setting value to the PDR.

○ Port output mode (PFR=0 & DDR=1)

- PDR read: Reads the value of the PDR.
- PDR write: Outputs the value of the PDR to the corresponding external pin.

○ Peripheral output mode (PFR=1 & DDR=x)

- PDR read: Reads the value of the corresponding peripheral output.
- PDR write: Writes a setting value to the PDR.

Notes:

- Use byte access to access to the I/O port registers.
- When a port from port 0 to port A is used as an external bus pin, the external bus function
 has priority. Thus, if the DDR register is rewritten while the port is functioning as an external
 bus pin, no input/output switching occurs. The DDR register value is enabled when the pin is
 switched to a general-purpose pin by changing the PFR register.
- During stop mode (HiZ = 0), the setting of pull-up resistor control register has priority.
- During stop mode (HiZ = 1), the setting of pull-up resistor control register is disable.
- If the pin is used as the external bus terminal, using pull-up resistor is prohibited. Do not write "1" to the bit of pull-up control register.

5.2 I/O Port Registers

This section describes the configuration and functions of the I/O port registers.

■ Configuration of the Port Data Registers (PDR)

Shown below is the configuration of the port data registers (PDR).

Fig	Figure 5.2-1 Configuration of the Port Data Registers (PDR)										
PDR0	7	6	5	4	3	2	1	0	Initial value	Access	
Address: 00000000H	P07	P06	P05	P04	P03	P02	P01	P00	XXXXXXXX _B	R/W	
PDR1	7	6	5	4	3	2	1	0	Initial value	Access	
Address: 00000001 _H	P17	P16	P15	P14	P13	P12	P11	P10	XXXXXXXX _B	R/W	
PDR2	7	6	5	4	3	2	1	0	Initial value	Access	
Address: 0000002_H	P27	P26	P25	P24	P23	P22	P21	P20	$XXXXXXXX_B$	R/W	
5554	_	~	_		•	•		•		A	
PDR6 Address: 00000006 _H	7 P67	6 P66	5 P65	4 	3 P63	2 P62	1 P61	0 P60	Initial value	Access R/W	
Address. 00000000	P0/	P00	P03	P04	P03	P02	POI	P60	ΛΛΛΛΛΛΛΒ		
PDR8	7	6	5	4	3	2	1	0	Initial value	Access	
Address: 0000008_H	P87	P86	P85	P84	P83	P82	P81	P80	$XXXXXXXX_B$	R/W	
	_		_		-	-				A	
PDR9	7	6	5	4	3	2	1	0	Initial value	Access R/W	
Address: 00000009 _H	-	P96	P95	P94	P93	P92	P91	P90	-XXXXXXX _B		
PDRA	7	6	5	4	3	2	1	0	Initial value	Access	
Address: 0000000A _H	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0	XXXXXXXXAB	R/W	
						I			-		
PDRB	7	6	5	4	3	2	1	0	Initial value	Access	
Address: $000000B_H$	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0	XXXXXXXX _B	R/W	
PDRG	7	6	5	4	3	2	1	0	Initial value	A	
Address: 00000010 _H	PG7	PG6	PG5	PG4	PG3	PG2	PG1	PG0	XXXXXXXXX	Access R/W	
	1 U/	1 00	i uj	1 04	1 45	TUZ	rur	1 00	NUNUUUUB	11/00	
PDRH	7	6	5	4	3	2	1	0	Initial value	Access	
Address: 00000011_{H}	-	-	-	-	-	PH2	PH1	PH0	XXX _B	R/W	
PDRJ	7	6	5	4	3	2	1	0	Initial value	Access	
Address: 00000013 _H	, PJ7	PJ6	PJ5	PJ4	PJ3	PJ2	PJ1	PJ0	XXXXXXXXX	R/W	
									5	1 1/ • •	

Figure 5.2-1 Configuration of the Port Data Registers (PDR)

• PDR0-PDR2, PDR6, PDR8-PDRB, PDRG, PDRH and PDRJ are the input/output data registers for the I/O port.

- Input/output is controlled by the corresponding DDR0-DDRJ and PFR6-PFRJ.
- There are not any PFR (Port Function Register) for P00-P07, P10-P17, P20-P27.

Note:

MB91301 and MB91V301 do not have PFR61 register.

■ Configuration of the Data Direction Registers (DDR)

Figure 5.2-2 shows the configuration of the data direction registers (DDR).

Figure 5.2-2 Configuration of the Data Direction Registers (DDR)

DDR0	7	6	5	4	3	2	1	0	Initial value	Access
Address: 00000600 _H [P07	P06	P05	P04	P03	P02	P01	P00	00000000 _B	R/W
DDR1	7	6	5	4	3	2	1	0	Initial value	Access
Address: 00000601 _H [P17	P16	P15	P14	P13	P12	P11	P10	00000000 _B	R/W
DDR2 Address: 00000602_{H}	7	6	5	4	3	2	1	0	Initial value	Access
	P27	P26	P25	P24	P23	P22	P21	P20	00000000 _B	R/W
DDR6	7	6	5	4	3	2	1	0	Initial value 0000000_{B}	Access
Address: 00000606 _H	P67	P66	P65	P64	P63	P62	P61	P60		R/W
DDR8	7	6	5	4	3	2	1	0	Initial value 0000000_{B}	Access
Address: 00000608 _H	P87	P86	P85	P84	P83	P82	P81	P80		R/W
DDR9 Address: 00000609 _H	7	6 P96	5 P95	4 P94	3 P93	2 P92	1 P91	0 P90	Initial value 0000000_{B}	Access R/W
DDRA	7	6	5	4	3	2	1	0	Initial value	Access
Address: 0000060A _H	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0	00000000₀	R/W
DDRB	7	6	5	4	3	2	1	0	Initial value	Access
Address: 0000060B⊦	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0	00000000 _B	R/W
DDRG Address: 00000400 _H	7	6	5	4	3	2	1	0	Initial value	Access
DDRH	PG7	PG6 6	PG5 5	PG4	PG3 3	PG2 2	PG1	PG0 0	00000000_{B}	R/W Access
Address: 00000401 _H DDRJ	- 7	- 6	- 5	- 4	- 3	PH2 2	PH1 1	<u>РН0</u> 0	000 _B Initial value	R/W Access
Address: 00000403_H	PJ7	PJ6	PJ5	PJ4	PJ3	PJ2	PJ1	PJ0	0000000 _B	R/W

DDR0-DDR2, DDR6, DDR8-DDRB, DDRG, DDRH and DDRJ control the input/output direction of the corresponding I/O port at the bit level.

- If PFR=0
 - DDR=0: Port input
 - DDR=1: Port output
- If PFR=1
 - DDR=0: Peripheral input
 - DDR=1: Peripheral output

■ Configuration of the Pull-up Resistor Control Registers (PCR)

The configuration of the pull-up resistor control registers (PCR) is shown in Figure 5.2-3 :

-		-			-			_		
	PCR0 bit	7	6	5	4	3	2	1	0 Initial valu	ie
Address	00000620 H	P07	P06	P05	P04	P03	P02	P01	P00 0000000	ЭВ
		R/W								
	PCR1 bit	7	6	5	4	3	2	1	0	
Address	00000621 H	P17	P16	P15	P14	P13	P12	P11	P10 0000000) в
		R/W								
	PCR2 bit	7	6	5	4	3	2	1	0	
Address	00000622 H	P27	P26	P25	P24	P23	P22	P21	P20 0000000) В
		R/W								
	PCR6 bit	7	6	5	4	3	2	1	0	
Address	00000626 H	P67	P66	P65	P64	P63	P62	P61	P60 0000000) в
		R/W	_							
	PCR8 bit	7	6	5	4	3	2	1	0	
Address	00000628 H	P87	P86	P85	P84	P83	P82	P81	P80 0000000) В
		R/W								
	PCR9 ^{bit}	7	6	5	4	3	2	1	0	
Address	00000629 H	-	P96	P95	P94	-	-	P91	0000-	в
		R/W								
	PCRA bit	7	6	5	4	3	2	1	0	
Address	0000062A H	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0 0000000) В
		R/W								
	PCRB bit	7	6	5	4	3	2	1	0	
Address	0000062B H	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0 0000000) в
		R/W								
	PCRG bit	7	6	5	4	3	2	1	0	
Address	00000420 H	PG7	PG6	PG5	PG4	PG3	PG2	PG1	PG0 0000000) В
		R/W								
	PCRH bit	7	6	5	4	3	2		0	
Address	00000421 H	-	-	-	-	-	PH2	PH1	PH0000	В
		R/W								
	PCRJ bit	7	6	5	4	3	2	1	0	
Address	00000423 H	PJ7	PJ6	PJ5	PJ4	PJ3	PJ2	PJ1	PJ0 0000000	В
		R/W								

Figure 5.2-3 Configuration of the Pull-up Resistor Control Registers (PCR)

PCR0-PCR2, PCR6, PCR8-PCRB, PCRG, PCRH and PCRJ control the pull-up resistor of the corresponding I/O port.

- PCR=0: No pull-up resistance
- PCR=1: Pull-up resistance

Note:

MB91302A and MB91V301A do not have PCRG register and PCRJ register.

-0----в

Initial value

Initial value

Initial value

Initial value

-000-00-в

----0000в

00-----в

-----0-в

R/W

Access

R/W

Access

R/W

Access

R/W

Access

R/W

Configuration of the Port Function Registers (PFR)

_

7

7

-

7

-

7

_

-

6

6

-

6

6

_

The configuration of the port function registers (PFR) is shown in Figure 5.2-4 :

PFR6 7 6 5 4 3 0 Initial value Access 2 1 Address: 00000616_H A23E A22E A21E A20E A19E A18E A17E A16E **11111111**в R/W PFR8 Initial value Access 7 6 5 4 3 2 0 1 Address: 00000618_H WR3XE WR2XE WR1XE BRQE 111--О--в R/W ----2 Initial value Access PFR9 3 0 6 5 4 1 Address: 00000619_H WEXE BAAE ASXE MCKE MCKEE SYSE -0000111в R/W --PFRA1 6 5 4 3 2 0 Initial value Access 7 1 Address: 0000061A_H CS7XE CS6XE CS5XE CS4XE CSX3E CS2XE CS1XE CS0XE 11111111 R/W Access 2 Initial value PFRB1 6 5 4 3 1 0 Address: 0000061B_H DES1 AK12 AK11 AK10 DES0 AK02 AK01 AK00 0000000в R/W Access PFRB2 7 6 5 3 2 1 0 Initial value 4 Address: 0000061C_H DRDE DWRE PPE1 000---00в R/W AKH1 AKH0 --PFRA2 Initial value Access 7 6 5 4 3 2 1 0

Figure 5.2-4 Configuration of the Data Direction Registers (PFR)

PFR6, PFR8-PFRB, PFRA2, PFRG, PFRH, PFRJ control the output of the corresponding external bus interface and peripherals at the bit level.

Be sure to set 0 for Empty bit of PFR.

Note:

Address: 00000410_H SCE2 SOE2

Address: 0000061E_H

PFRG

PFRH

PFRJ

Address: 00000411_H

Address: 00000413_H

Address: 00000617_H

PFR61

MB91301 and MB91V301 do not have PFR61 register.

PPE2

5

-

5

-

5

PPE0 SCE1 SOE1

5

-

_

4

-

4

_

4

4

-

-

3

-

3

-

3

-

3

-

2

-

2

-

2

2

-

1

-

1

PPE3

1

1

SCE0 SOE0

TEST1 TEST0 I2CE1 I2CE0

-

0

-

0

-

0

-

0

■ Function of the Port Function Registers (PFR)

The following table summarizes the initial values and functions of the PFR registers.

Table 5.2-1 Functions of the Port Function Registers (PFR)

Register name	Bit name	Bit value	Function	Initial value
PFR6		0	General-purpose port (P60)	1
0616 _H	A16E	1	Address output	
		0	General-purpose port (P61)	1
	A17E	1	Address output	
		0	General-purpose port (P62)	1
	A18E	1	Address output	
	1105	0	General-purpose port (P63)	1
	A19E	1	Address output	
	1005	0	General-purpose port (P64)	1
	A20E	1	Address output	
	1015	0	General-purpose port (P65)	1
	A21E	1	Address output	
	A22E	0	General-purpose port (P66)	1
		1	Address output	
	1005	0	General-purpose port (P67)	1
	A23E	1	Address output	
PFR8 0618 _H			General-purpose port (P82, P81)	0
	BRQE	1	Enable at setting BREN of BRQ, $\overline{\text{BGRNT}}$ and TCR register = 1.	
		0	General-purpose port (P85)	1
	WR1XE	1	WR1/ULBX/DQMUL	
		0	General-purpose port (P86)	1
	WR2XE	1	WR2/LUBX/DQMLU	
		0	General-purpose port (P87)	1
	WR3XE	1	WR3/LUBX/DQMLL	
PFR9 0619 _H	SYSE	0	General-purpose port (P90)	1
		1	Set "1" at using SYSCLK.	
	MOVEE	0	General-purpose port (P91)	1
	MCKEE	1	MCLKE	

Register name	Bit name	Bit value	Function	Initial value									
	MOKE	0	General-purpose port (P92)	1									
	MCKE	1	Set "1" at using memory clock and MCLK										
		0	General-purpose port (P94)	0									
	ASXE	1	Set "1" at using AS/LBA/SRAS and general/burst memory										
	BAAE	0	General-purpose port (P95)	0									
		1	Set "1" at using BAA/SCAS and burst memory										
		0	General-purpose port (P96)	0									
	WEXE	1	Set "1" at using WRn/SWR and general/burst memory										
		0	General-purpose port (PA0)	1									
PFRA 061A _H	CS0XE	1	$\overline{\text{CS0}}$ output, Enable at setting CSE0 bit of CSER register to "1".										
	CS1XE	0	General-purpose port (PA1)	1									
		1	$\overline{\text{CS1}}$ output, Enable at setting CSE1 bit of CSER register to "1".										
	CS2XE	0	General-purpose port (PA2)	1									
		1	CS2 output, Enable at setting CSE2 bit of CSER register to "1".										
		0	General-purpose port (PA3)	1									
	CS3XE	1	CS3 output, Enable at setting CSE3 bit of CSER register to "1".										
		0	General-purpose port (PA4)	1									
	CS4XE	CS4XE	CS4XE	CS4XE	CS4XE	CS4XE	CS4XE	CS4XE	CS4XE	CS4XE	1	CS4 output, Enable at setting CSE4 bit of CSER register to "1".	
		0	General-purpose port (PA5)	1									
	CS5XE	1	CS5 output, Enable at setting CSE5 bit of CSER register to "1".										
		0	General-purpose port (PA6)	1									
	CS6XE	1	CS6 output, Enable at setting CSE6 bit of CSER register to "1".										
		0	General-purpose port (PA7)	1									
	CS7XE	1	$\overline{\text{CS7}}$ output, Enable at setting CSE7 bit of CSER register to "1".										

Table 5.2-1 Functions of the Port Function Registers (PFR) (Continued)

CHAPTER 5 I/O PORT

Table 5.2-1	1 Functions of the Port Function Registers (PFR) (Continued)
-------------	--

Register name	Bit name	Bit value	Function	Initial value								
	AK02,	0,0,0	General-purpose port (PB0, PB1, PB2)	000								
PFRB1 061B _H	AK01, AK00	0,0,1	DACK0, DEOP0 output (FR30-compatible for fly-by transfer)									
		0,1,0	DACK0, DEOP0 output (FR30-compatible for two- cycle transfer RD timing)									
		0,1,1	DACK0, DEOP0 output (FR30-compatible for two- cycle transfer WRn timing)									
		1,0,0	DACK0, DEOP0 output (FR30-compatible for two- cycle transfer WE timing)									
		1,0,1	DACK0, DEOP0 output (FR30-compatible for two- cycle transfer WRn/RD timing)									
		1,1,0	DACK0, DEOP0 output (FR30-compatible for two- cycle transfer $\overline{\text{WE}}$, $\overline{\text{RD}}$ timing)									
		1,1,1	DACK0, DEOP0 output (chip select timing)	-								
	DES0,	0,0	General-purpose port input (PB2)	00								
	PB2 (DDRB)	0,1	General-purpose port output (PB2)	_								
		1,0	DMAC: DSTP0 input (setting prohibited)									
		1,1	DMAC: DEOP0 output									
	AK12,	0,0,0	General-purpose port (PB3, PB4, PB5)	000								
	AK11, AK10		0,0,1	DACK1, DEOP1 output (FR30-compatible for fly-by transfer)								
		0,1,0	DACK1, DEOP1 output (FR30-compatible for two- cycle transfer RD timing)									
						l				0,1,1	DACK1, DEOP1 output (FR30-compatible for two- cycle transfer WRn timing)	
				1,0,0	DACK1, DEOP1 output (FR30-compatible for two- cycle transfer WE timing)							
		1,0,1	DACK1, DEOP1 output (FR30-compatible for two- cycle transfer WRn/RD timing)									
		1,1,0	DACK1, DEOP1 output (FR30-compatible for two- cycle transfer WE, RD timing)									
		1,1,1	DACK1, DEOP1 output (chip select timing)									
PFRB1	DES1,	0,0	General-purpose port input (PB5)	00								
061B _H	PB5 (DDRB)	0,1	General-purpose port output (PB5)									
		1,0	DMAC: DSTP1 input (setting prohibited)									
		1,1	DMAC: DEOP1 output									

Table 5.2-1	Functions of the	e Port Function	Registers	(PFR) (Continued)
-------------	------------------	-----------------	-----------	-------------------

Register name	Bit name	Bit value	Function	Initial value	
PFRB2		0	DACK0 output active L	0	
061C _H	AKH0	1	DACK0 output active H		
		0	DACK1 output active L	0	
	AKH1	1	DACK1 output active H		
		0	General-purpose port (PB5)/DEOP1 output	0	
	PPE1	1	PPG1 output		
	DWDE	0	General-purpose port (PB6)	0	
	DWRE	1	IOWR output		
	DDDE	0	General-purpose port (PB7)	0	
	DRDE	1	IORD output		
PFRA2	PPE2	0	General-purpose port (PA5)/CS5 output	0	
061E _H		1	PPG2 output		
PFRG 0410 _H	SOE2	0	General-purpose port (PG6)	0	
		1	SOT2 output		
	SCE2	0	General-purpose port (PG7)	0	
		1	SCK2 output		
PFRH	PPE3	0	General-purpose port (PH1)	0	
0411 _H		1	PPG3 output		
	0050	0	General-purpose port (PJ1)	0	
	SOE0	1	SOT0 output		
	0.050	0	General-purpose port (PJ2)	0	
	SCE0	1	SCK0 output		
PFRJ	0054	0	General-purpose port (PJ4)	0	
0413 _H	SOE1	1	SOT1 output		
	0054	0	General-purpose port (PJ5)	0	
	SCE1	1	SCK1 output		
	PPE0	0	General-purpose port (PJ6)	0	
		1	PPG0 output		
PFR61	I ² CE0	0	General-purpose port (P65, P64)/address output (A21, A20)	0	
0617 _H		1	I ² C I/F, SCL0, SDA0 I/O		

CHAPTER 5 I/O PORT

Register name	Bit name	Bit value	Function	Initial value
	I ² CE1	0	General-purpose port (P67, P66)/address output (A23, A22)	0
		1	I ² C I/F, SCL1, SDA1 I/O	
	TEST0	0	Be sure to set 0.	0
	TESTO	1	Test function. Setting disabled.	
	TEST1	0	Be sure to set 0.	0
	12011	1	Test function. Setting disabled.	

Table 5.2-1 Functions of the Port Function Registers (PFR) (Continued)

*: MB91301 and MB91V301 do not have PFR61 register.

- For enabled PPG1 output, set PPE1 bit = 1 and DES1 bit = 0.
- For enabled PPG2 output, set PPE2 bit = 1 and CS5XE bit = 0.
- For enabled SDA0 and SDL0 output, set I2CE0 bit = 1.
- For enabled SDA1 and SDL1 output, set I2CE1 bit = 1.
- For enabled general port (P67), set I2CE1 bit = 0 and AE23 bit = 0.
- For enabled general port (P66), set I2CE1 bit = 0 and AE22 bit = 0.
- For enabled general port (P65), set I2CE0 bit = 0 and AE21 bit = 0.
- For enabled general port (P64), set I2CE0 bit = 0 and AE20 bit = 0.
- For enabled address output (A23), set I2CE1 bit = 0 and AE23 bit = 1.
- For enabled address output (A22), set I2CE1 bit = 0 and AE22 bit = 1.
- For enabled address output (A21), set I2CE0 bit = 0 and AE21 bit = 1.
- For enabled address output (A20), set I2CE0 bit = 0 and AE20 bit = 1.

CHAPTER 6 16-BIT RELOAD TIMER

This chapter describes the 16-bit reload timer, the configuration and functions of registers, and 16-bit reload timer operation.

- 6.1 "Overview of the 16-bit Reload Timer"
- 6.2 "16-bit Reload Timer Registers"
- 6.3 "16-bit Reload Timer Operation"
- 6.4 "Operating States of the Counter"
- 6.5 "Precautions on Using the 16-bit Reload Timer"

6.1 Overview of the 16-bit Reload Timer

The 16-bit reload timer consists of a 16-bit down counter, a 16-bit reload register, a prescaler for creating an internal count clock, and a control register.

Overview of the 16-bit Reload Timer

The 16-bit reload timer consists of a 16-bit down counter, a 16-bit reload register, a prescaler for creating an internal count clock, and a control register.

The input clock can be selected from three internal clocks (machine clock divided by 2, 8, and 32) and an external clock.

Channels 0 and 1 supports the activation of DMA transfers resulting from interrupts.

The MB91301 series has three built-in channels, for the 16-bit reload timer.

Block Diagram

Figure 6.1-1 "Block Diagram of the 16-bit Reload Timer" is a block diagram of the 16-bit reload timer.

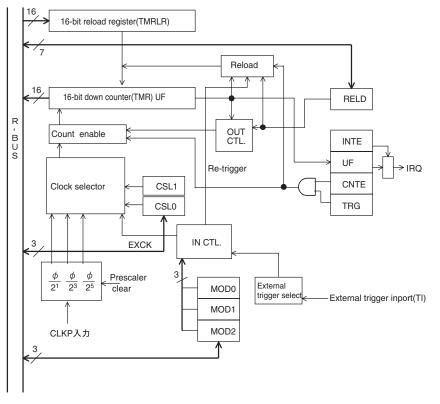
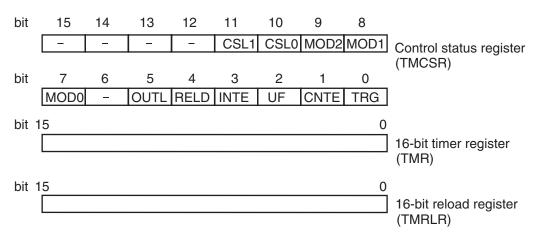



Figure 6.1-1 Block Diagram of the 16-bit Reload Timer

6.2 16-bit Reload Timer Registers

This section describes the configuration and functions of the registers used by the 16bit reload timer.

■ 16-bit Reload Timer Registers

Figure 6.2-1 16-bit Reload Timer Registers

6.2.1 Control Status Register (TMCSR)

The control status register (TMCSR) controls the operating modes and interrupts of the 16-bit timer.

Bit Configuration of the Control Status Register (TMCSR)

address: 00004E _H	bit	15	14	13	12	11	10	9	8	initial value
00004L _H	[—	_	—	CSL1	CSLO	MOD2	MOD1	XX0000
00005E _H	-	—	_	(R/W)	(R/W)	R/W	R/W	R/W	R/W	00000000 _B
	bit	7	6	5	4	3	2	1	0	
	[MODO	—		RELD	INTE	UF	CNTE	TRG	
	-	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	

Figure 6.2-2 Bit Configuration of the Control Status Register (TMCSR)

Rewrite bits other than the UF, CNTE, and TRG bits only when CNTE=0.

The control status register (TMCSR) supports simultaneous writing.

When write to 5, 12 and 13 bits, be sure to write "0".

■ Bit Functions of the Control Status Register (TMCSR)

The following describes the bit functions of the control status register (TMCSR).

[Bits 13] Reserved

Be sure to write "0" at write.

[Bits 12] Reserved

Be sure to write "0" at write.

[Bits 11, 10] CSL1, CSL0 (Count source SeLect)

These bits are the count source select bits. Count sources can be selected from the internal clock or the external event. Table 6.2-1 "Clock Sources Set Using the CSL Bits" shows the count sources that can be selected using these bits. Countable edges used when external event count mode are set using the MOD1 and MOD0 bits.

Table 6.2-1 Count Sources Set Using the CSL Bits

CSL1	CSL0	Clock source (φ: Machine clock)
0	0	Internal clock $\phi/2^1$ (ch0-2)
0	1	Internal clock φ/2 ³ (ch0-2)
1	0	Internal clock $\phi/2^5$ (ch0-2)
1	1	External clock (event) (ch0-2)

Note: The minimum pulse width required for an external clock is 2T (T: Peripheral clock machine cycle).

[Bits 9, 8, 7] MOD2, MOD1, MOD0 (MODe): Setting of operation mode

These bits set the operating modes.

These functions are switched by the count source ("internal clock" or "external event").

- Internal clock: setting reload trigger
- External event: setting count enable edge

The MOD2 bit has to be set to "0".

[Reload trigger setting at selecting internal clock]

When internal clock (CSL1, CSL0 = 00, 01, 10) are selected as count source, the contents of reload register are loaded after inputted enable edge by setting MOD2 to 0 bits, and count function keep operating. Table 6.2-2 describes the settings of the MOD2, MOD1, and MOD0 bits.

Table 6.2-2 Bit MOD2, 1, and 0 Setting Method 1 (in Internal Clock Mode)

MOD2	MOD1	MOD0	Valid edge
0	0	0	Software trigger
0	0	1	External trigger (rising edge)
0	1	0	External trigger (falling edge)
0	1	1	External trigger (both edges)
1	х	х	Setting prohibited

Note: x in this table represents any value.

[Valid edge setting at selecting external event]

When external clock event (CSL1, CSL0 = 11) are selected as count source, the event is counted after inputted enable edge by setting MODE2 to MOD0 bits. Table 6.2-3 describes the settings of the MOD2, MOD1, and MOD0 bits.

Table 6.2-3 Bit MOD2,	1, and 0 Setting N	lethod (in selecting	Event Count Mode)
-----------------------	--------------------	----------------------	-------------------

MOD2	MOD1	MOD0	Valid edge or level
	0	0	-
x 0	1	External event (Rising edge)	
^	1	0	External event (Falling edge)
	1	1	External evnet (Both edges)

Note: x in this table represents any value.

Reload of external event are generated by underflow and software trigger.

[Bit 6] (reserved)

This bit is unused.

The read value is always 0.

[Bit 5] (reserved)

be sure to write 0 at writing.

[Bit 4] RELD: Reload enable

This bit is the reload enable bit. If it is set to 1, reload mode is entered. As soon as the counter value underflows from 0000_{H} to FFFF_{H} , the contents of the reload register are loaded into the counter and the count operation is continued.

If this bit is set to 0, the count operation is stopped when the counter value underflows from $0000_{\rm H}$ to FFFF_H.

[Bit 3] INTE: Interrupt request enable

This bit is the interrupt request enable bit. If the INTE bit is set to 1, an interrupt request is generated when the UF bit is set to 1. If it is set to 0, no interrupt request is generated.

[Bit 2] UF: Timer interrupt request

This bit is the timer interrupt request flag. This bit is set to 1 when the counter value underflows from 0000_{H} to FFFF_H. Write 0 to this bit to clear it.

Writing 1 to this bit is meaningless. When this bit is read by a read modify write instruction, 1 is always read.

[Bit 1] CNTE: Count enable bit of timer

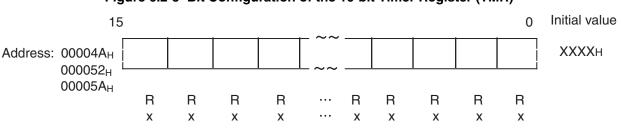
This bit is the count enable bit of the timer. Write 1 to this bit to enter the start trigger wait state. Write 0 to this bit to stop the count operation.

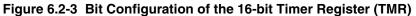
[Bit 0] TRG: Software trigger

This bit is the software trigger bit. Write 1 to this bit to generate a software trigger, load the contents of the reload register into the counter, and start the count operation.

Writing 0 to this bit is meaningless. The read value is always 0.

The trigger input to this register is valid only if CNTE=1. No operation occurs if CNTE=0.

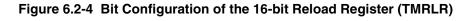

6.2.2 16-bit Timer Register (TMR)

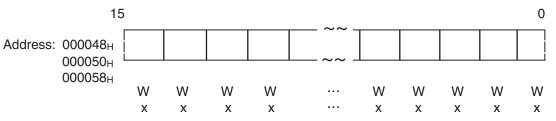

The 16-bit timer register (TMR) is a register to which the count value of the 16-bit timer can be read. The initial value is undefined.

Be sure to read this register using a 16-bit data transfer instruction.

■ Bit Configuration of the 16-bit Timer Register (TMR)

Figure 6.2-3 "Bit Configuration of the 16-bit Timer Register (TMR)" shows the bit configuration of the 16-bit timer register (TMR).


6.2.3 16-bit Reload Register (TMRLR)


The 16-bit reload register (TMRLR) holds the initial value of a counter. The initial value is undefined.

Be sure to read this register using a 16-bit data transfer instruction.

■ Bit Configuration of the 16-bit Reload Register (TMRLR)

Figure 6.2-4 "Bit Configuration of the 16-bit Reload Register (TMRLR)" shows the bit configuration of the 16-bit reload register (TMRLR).

6.3 16-bit Reload Timer Operation

This section describes the following operations of the 16-bit reload timer:

- Internal clock operation
- Underflow operation

Internal Clock Operation

If the timer operates with a divide-by clock of the internal clock, one of the clocks created by dividing the machine clock by 2, 8, or 32 can be selected as the clock source.

To start the count operation as soon as counting is enabled, write 1 to the CNTE and TRG bits of the control status register. Trigger input occurring due to the TRG bit is always valid regardless of the operating mode while the timer is running (CNTE=1).

Figure 6.3-1 "Startup and Operations of the Counter" shows the startup and operations of the counter.

Time as long as T (T: peripheral clock machine cycle) is required after the counter start trigger is input and before the data of the reload register is actually loaded into the counter.

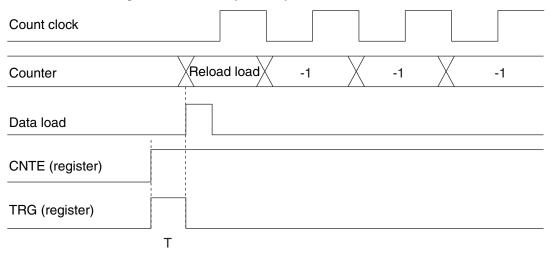


Figure 6.3-1 Startup and Operations of the Counter

Underflow Operation

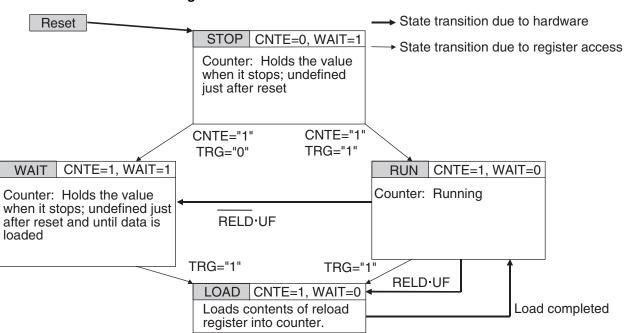
An underflow is an event in which the counter value changes from 0000_{H} to FFFF_H. Thus, an underflow occurs at the count of [Reload register setting value + 1].

If the RELD bit of the control status register (TMCSR) is set to 1 when an underflow occurs, the contents of the 16-bit reload register (TMRLR) are loaded and the count operation is continued. If the RELD bit is set to 0, the counter stops at FFF_H .

An underflow sets the UF bit of the control status register (TMCSR) and, if the INTE bit is set to 1, generates an interrupt request.

Figure 6.3-2 "Timing Chart of the Underflow Operation" shows the timing chart of the underflow operation.

[RELD=1]
Count clock
Counter X 0000 _H X Reload data -1 X -1 X -1
Data load
Underflow set
[RELD=0]
Count clock
Counter X 0000 _H X FFFF _H
Underflow set


Figure 6.3-2 Timing Chart of the Underflow Operation

6.4 Operating States of the Counter

The counter state is determined by the CNTE bit of the control status register (TMCSR) and the WAIT signal, which is an internal signal. The states that can be set including the stop state, when CNTE=0 and WAIT=1 (STOP state); the startup trigger wait state, when CNTE=1 and WAIT=1 (WAIT status); and the operation state, when CNTE=1 and WAIT=0 (RUN state).

Operating States of the Counter

Figure 6.4-1 "Status Transitions of Counter" shows the state transitions.

Figure 6.4-1 Status Transitions of Counter

6.5 Precautions on Using the 16-bit Reload Timer

This section contains precautions on using the 16-bit reload timer.

Precautions on Using the 16-bit Reload Timer

O Internal prescaler

The internal prescaler is enabled if a trigger (software or external trigger) is applied while bit 1 (timer enable: CNTE) of the control status register (TMCSR) is set to 1.

O Timing of setting and clearing the interrupt request flag

If the device attempts to set and clear the interrupt request flag at the same time, the flag is set and the clear operation becomes ineffective.

○ 16-bit reload register (TMRLR)

If the device attempts to write to the 16-bit timer register and reload the data into the 16-bit reload register at the same time, old data is loaded into the counter. New data is loaded into the counter only in the next reload timing.

○ 16-bit timer register (TMR)

If the device attempts to load and count the 16-bit timer register at the same time, the load (reload) operation takes precedence.

CHAPTER 7 PPG TIMER

This chapter describes the PPG timer, register configurations and functions, and PPG timer operation. The chapter also provides a block diagram of the PPG timer.

- 7.1 "Overview of PPG Timer"
- 7.2 "Block Diagram of PPG Timer"
- 7.3 "Registers of PPG Timer"
- 7.4 "PPG Operation"
- 7.5 "One-shot Operation"
- 7.6 "PPG Timer Interrupt Source and Timing Chart"
- 7.7 "Activating Multiple Channels by Using the General Control Register"
- 7.8 "Notes on Use of the PPG Timer"

7.1 Overview of PPG Timer

The PPG timer can generate PWM waveforms with great precision and efficiency. The MB91301 has four built-in channels for the PPG timers.

Features of PPG timer

- Each channel consists of the following elements:
 - 16-bit down counter
 - 16-bit data register with cycle setting buffer
 - 16-bit compare register with duty setting buffer
 - Pin controller
- One of the following can be selected for the 16-bit down counter clock:
 - Internal clock: φ
 - Internal clock: φ/4
 - Internal clock: $\phi/16$
 - Internal clock: φ/64
- The counter value can be initialized to FFFF_H by using reset and counter borrows.
- Each channel has a PPG output.
- Register
 - Cycle set register: reload data register with buffer
 - Duty set register: compare register with buffer
 - Transfer from buffers is performed by using counter borrows.
- Pin control overview
 - When a duty ratio match occurs, the counter value is set to 1. (Preferred)
 - When a counter borrow occurs, the counter value is reset to 0.
 - By using output value fix mode, all-low (or all-high) can be output easily.
 - In addition, the polarity can be specified.
- An interrupt request can be generated by the following sources. Interrupt requests can be used to start DMA transfer.
 - Start of PPG timer
 - Counter borrow (cycle match)
 - Duty cycle match
 - Counter borrow (cycle match) or duty ratio match
- Software or other interval timers can be used to specify that multiple channels are activated at the same time. In addition, restart during operation can be specified.
- Detected request level can be selected from "rising edge", "falling edge" and "both edges".

7.2 Block Diagram of PPG Timer

Figure 7.2-1 "Block diagram of the entire PPG timer" shows the block diagram of an entire PPG timer. Figure 7.2-2 "Block diagram of one channel of the PPG timer" shows the block diagram of one channel of the PPG timer.

Block diagram of the entire PPG timer

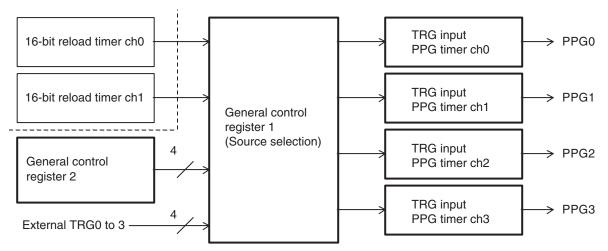


Figure 7.2-1 Block diagram of the entire PPG timer

■ Block diagram of one channel of the PPG timer

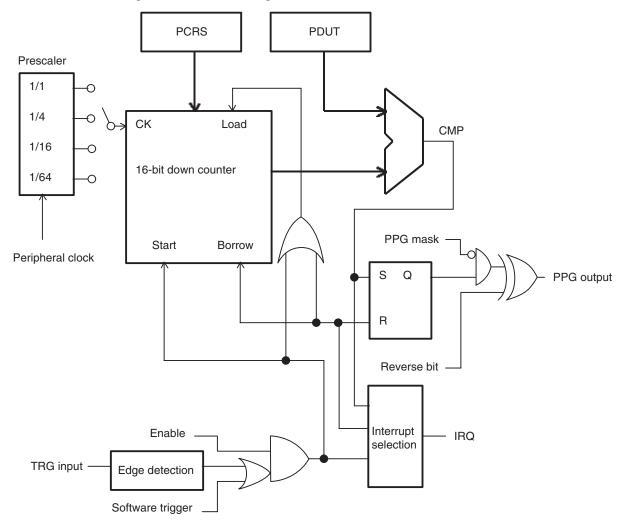


Figure 7.2-2 Block diagram of one channel of the PPG timer

7.3 Registers of PPG Timer

Figure 7.3-1 "Register list of PPG timer" lists the registers of the PPG timer.

Register list of PPG timer

Figure 7.3-1 Register list of PPG timer 0 15 General control register 10 GCN10 General control register 20 GCN20 Timer register (ch0) PTMR0 Cycle set register (ch0) PCSR0 Duty set register (ch0) PDUT0 Control status register (ch0) PCNH0 PCNL0 Timer register (ch1) PTMR1 Cycle set register (ch1) PCSR1 Duty set register (ch1) PDUT1 Control status register (ch1) PCNH1 PCNL1 Timer register (ch2) PTMR2 Cycle set register (ch2) PCSR2 Duty set register (ch2) PDUT2 Control status register (ch2) PCNH2 PCNL2 Timer register (ch3) PTMR3 Cycle set register (ch3) PCSR3 Duty set register (ch3) PDUT3 Control status register (ch3) PCNH3 PCNL3

7.3.1 Control status registers (PCNH, PCNL)

The control status register (PCNH, PCNL) controls the PPG timer and indicates the status of the timer. Note that some bits cannot be rewritten while the PPG timer is operating.

Control status registers (PCNH, PCNL)

The bit configuration of the control status registers (PCNH, PCNL) is shown in Figure 7.3-2.

Figure 7.3-2 Bit configuration of the control status register (PCNH, PCNL)

PCNH	bit	15	14	13	12	11	10	9	8	Initial value
Address:	ch0 000126 _H	CNTE	STGR	MDSE	RTRG	CKS1	CKS0	PGMS	—	0000000-0000000X
	ch1 00012E _H ch2 000136 _H	R/W	—							
	ch3 00013E _H	0	0	×	×	×	×	0	—	←Rewriting during operat
	She ded lot-H									
PCNH	bit	7	6	5	4	3	2	1	0	
Address:	ch0 000127 _H	EGS1	EGS0	IREN	IRQF	IRS1	IRS0	—	OSEL	
		R/W	R/W	R/W	R/W	R/W	R/W	—	R/W	
		×	×	0	0	×	×	—	×	←Rewriting during operat
Address:	ch0 000127 _H ch1 00012F _H ch2 000137 _H ch3 00013F _H	R/W	R/W	RW	R/W	R/W	R/W		R/W	←Rewriting during operat

Bit function of control status registers (PCNH, PCNL)

The bit function of the control status registers (PCNH, PCNL) is shown below.

[Bit 15] CNTE: Timer enable bit

This bit enables operation of the 16-bit down counter.

table 7.3-1 shows setting of timer enable.

CNTE	Function
0	Stopped (initial value)
1	Enabled

[Bit 14] STGR: Software trigger bit

When this bit is written to 1, a software trigger is activated. Whenever this bit is read, a value of 0 is returned.

[Bit 13] MDSE: Mode selection bit

This bit determines whether the PPG operation in which pulses are generated continuously or the one-shot operation in which only single pulses are generated is used.

MDSE	Function
0	PPG operation (initial value)
1	One-shot operation

[Bit 12] RTRG: Restart enable bit

This bit determines whether restart through a software trigger or trigger input is allowed.

RTRG	Function
0	Restart disabled (initial value)
1	Restart enabled

[Bits 11, 10] CKS1, CKS0: Counter clock selection bit

These bits select the counter clock of the 16-bit down counter.

CKS1	CKS0	Cycle
0	0	φ (initial value)
0	1	ф/4
1	0	ф/16
1	1	ф/64

[Bit 9] PGMS: PPG output mask selection bit

When this bit is written to 1, the PPG output can be masked to 0 or 1 regardless of the mode setting, cycle setting, or duty ratio setting.

PPG output when PGMS is set to 1

Polarity	PPG output
Normal polarity	Low output
Reverse polarity	High output

For output of all-high for normal polarity (or all-low for reverse polarity), write the same value to the cycle set register and the duty set register to obtain the reverse output of these mask values.

[Bit 8] Reserved bit

This bit is unused bit.

[Bits 7, 6] EGS1, EGS0: Trigger input edge selection bit

This bit selects the valid edge for the activation source selected by the general control register 1.

When the software trigger bit is set to 1, a software trigger is enabled regardless of the mode selected.

EGS1	EGS0	Edge selection
0	0	Disabled (initial value)
0	1	Rising edge
1	0	Falling edge
1	1	Both edges

[Bit 5] IREN: Interrupt request enable bit

This bit specifies whether to enable interrupt requests.

IREN	Function	
0	Disabled (initial value)	
1	Enabled	

[Bit 4] IRQF: Interrupt request flag

When bit 5 (IREN) is set to "Enabled", and the interrupt source specified by bits 3 and 2 (IRS1 and IRS0) occurs, this bit is set and an interrupt request is issued to the CPU. In addition, when activation of DMA transfer is specified, DMA transfer is started.

This bit is cleared when a value of 0 is written or the clear signal is received from the DMAC.

The value of this bit does not change even if there is an attempt to set it to 1 via a write operation.

When this bit is read by read-modify-write instructions, 1 is returned regardless of the bit value.

[Bits 3, 2] IRS1, IRS0: Interrupt source selection bit

These bits select the interrupt source that sets bit 4 (IRQF).

IRS1	IRS0	Interrupt source	
0	0	Software trigger or trigger input (initial value)	
0	1	Counter borrow (cycle match)	
1	0	Duty match	
1	1	Counter borrow (cycle match) or duty match	

[Bit 1] Reserved bit

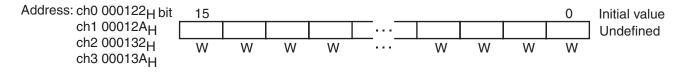
This bit is unused bit.

[Bit 0] OSEL: PPG output polarity specification bit

This bit specifies the polarity of the PPG output

This bit and PGMS bit of bit 9 are combined to select the type of PPG output

PMGS	OSEL	PPG output			
0	0	Normal polarity (initial value)			
0	1	Reverse polarity			
1	0	Fixed to low level			
1	1	Fixed to high level			


Polarity	After reset	Duty match	Counter borrow
Normal polarity	Low output		
Reverse polarity	High output		

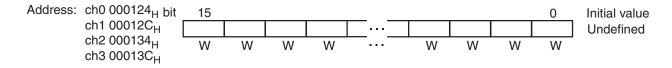
7.3.2 PPG cycle set register (PCSR)

The PCSR is a register for setting cycles. It has a buffer. Transfers from the buffer are performed through counter borrows.

■ Bit configuration of PPG cycle set register (PCSR)

The bit configuration of the PCSR is shown below.

After initializing or rewriting the PCSR, write to the duty set register.


This register must be accessed in 16-bit data or 32-bit data.

7.3.3 PPG duty set register (PDUT)

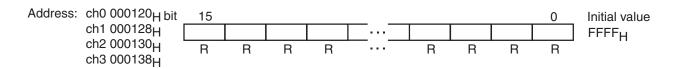
The PDUT is a register for setting duties. It has a buffer. Transfers from the buffer are performed through counter borrows.

■ Bit configuration of PPG duty set register (PDUT)

The bit configuration of the PDUT is shown below.

If the same value is written to the PCSR and PDUT, all-high is output for normal polarity and alllow is output for reverse polarity.

Do not set values so that the condition PCSR < PDUT would be met. Otherwise, the PPG output becomes undefined.


This register must be accessed in 16-bit mode or 32-bit mode.

7.3.4 PPG timer register (PTMR)

The PTMR can be used to read the 16-bit down counter.

■ Bit configuration of PPG timer register (PTMR)

The bit configuration of the PTMR (PTMR) is shown below.

Note:

This register must be accessed in 16-bit mode.

7.3.5 General control register 10 (GCN10)

The GCN10 selects the source of the PPG timer trigger input.

■ Bit configuration of general control register 10 (GCN10)

bit	15	14	13	12	11	10	9	8	
Address: 000118 _H		TSEL33:30			TSEL23:20				
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	← Attribute
	0	0	1	1	0	0	1	0	← Initial value
bit	7	6	5	4	3	2	1	0	
		TSEL1	3:10			TSEL	03:00		
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	← Attribute
	0	0	0	1	0	0	0	0	← Initial value

The bit configuration of the GCN10 is shown below.

■ Details of general control register 10 (GCN10)

[Bits 15-12] TSEL33-30: ch3 trigger input selection bit

These bits are ch3 trigger input select bits.

	TSEL	.33-30	Function	
0	0	0	0	EN0 bit of GCN2
0	0	0	1	EN1 bit of GCN2
0	0	1	0	EN2 bit of GCN2
0	0	1	1	EN3 bit of GCN2 (initial value)
0	1	0	0	16-bit reload timer ch0
0	1	0	1	16-bit reload timer ch1
0	1	1	Х	Setting prohibited
1	0	0	0	External TRG0
1	0	0	1	External TRG1
1	0	1	0	External TRG2
1	0	1	1	External TRG3
1	1	Х	Х	Setting prohibited

[Bits 11-8] TSEL23-20: ch2 trigger input selection bit

These bits are ch2 trigger input select bits.

	TSEL	.23-20	Function	
0	0	0	0	EN0 bit of GCN2
0	0	0	1	EN1 bit of GCN2
0	0	1	0	EN2 bit of GCN2 (initial value)
0	0	1	1	EN3 bit of GCN2
0	1	0	0	16-bit reload timer ch0
0	1	0	1	16-bit reload timer ch1
0	1	1	Х	Setting prohibited
1	0	0	0	External TRG0
1	0	0	1	External TRG1
1	0	1	0	External TRG2
1	0	1	1	External TRG3
1	1	Х	Х	Setting prohibited

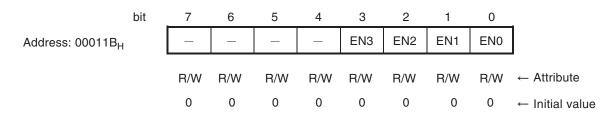
[Bits 7-4] TSEL13-10: ch1 trigger input selection bit

These bits are ch1 trigger input select bits.

	TSEL	.13-10	Function	
0	0	0	0	EN0 bit of GCN2
0	0	0	1	EN1 bit of GCN2 (initial value)
0	0	1	0	EN2 bit of GCN2
0	0	1	1	EN3 bit of GCN2
0	1	0	0	16-bit reload timer ch0
0	1	0	1	16-bit reload timer ch1
0	1	1	Х	Setting prohibited
1	0	0	0	External TRG0
1	0	0	1	External TRG1
1	0	1	0	External TRG2
1	0	1	1	External TRG3
1	1	Х	Х	Setting prohibited

[Bits 3-0] TSEL03-00: ch0 trigger input selection bit

These bits are ch3 trigger input select bits.


	TSEL	.03-00	ch0 trigger input	
0	0	0	0	EN0 bit of GCN2 (initial value)
0	0	0	1	EN1 bit of GCN2
0	0	1	0	EN2 bit of GCN2
0	0	1	1	EN3 bit of GCN2
0	1	0	0	16-bit reload timer ch0
0	1	0	1	16-bit reload timer ch1
0	1	1	Х	Setting prohibited
1	0	0	0	External TRG0
1	0	0	1	External TRG1
1	0	1	0	External TRG2
1	0	1	1	External TRG3
1	1	Х	Х	Setting prohibited

7.3.6 General control register 20 (GCN20)

The GCN20 activates a start trigger through software.

■ Bit configuration of General control register 20 (GCN20)

The bit configuration of the GCN20 is shown below.

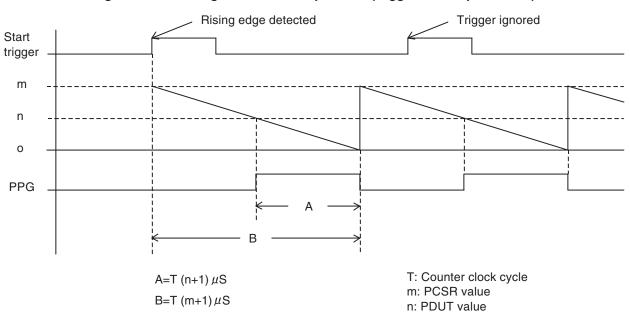
When one of the EN-bits of this register is selected by the GCN10, the register value is passed to the trigger input of the PPG timer.

The PPG timers of multiple channels can be activated at the same time by generating the edge selected by the EGS1 and EGS0 bits of the control status register (PCN) via software.

Bits 7 to 4 of this register must be set to 0.

Bits 7 to 0 of address $00011A_H$ must be set to 0.

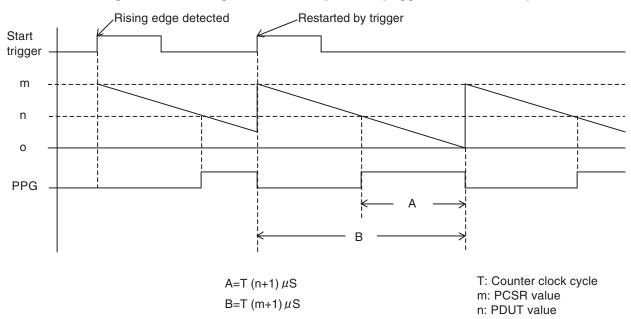
7.4 PPG Operation


The PPG operation allows continuous pulses to be output after a start trigger is detected. The cycle and duty ratio of the output pulses can be controlled by changing the values of the PCSR and PDUT, respectively.

After data is written to PCSR, be sure to write to PDUT.

PPG operation

O When restart is inhibited


Figure 7.4-1 "Timing chart of PPG operation (trigger restart prohibited)" shows a timing chart of the PPG operation when trigger restart is inhibited.

O When restart is enabled

Figure 7.4-2 "Timing chart of PPG operation (trigger restart enabled)" shows the timing chart of the PPG operation when trigger restart is enabled.

Figure 7.4-2 Timing chart of PPG operation (trigger restart enabled)

7.5 One-shot Operation

The one-shot operation allows output of a single pulse of any width through a trigger. If restart is enabled, the counter value is reloaded when the edge is detected during operation.

One-shot operation

O When restart is inhibited

Figure 7.5-1 "Timing chart of a one-shot operation (trigger restart prohibited)" shows the timing chart of a one-shot operation when a trigger restart is inhibited.

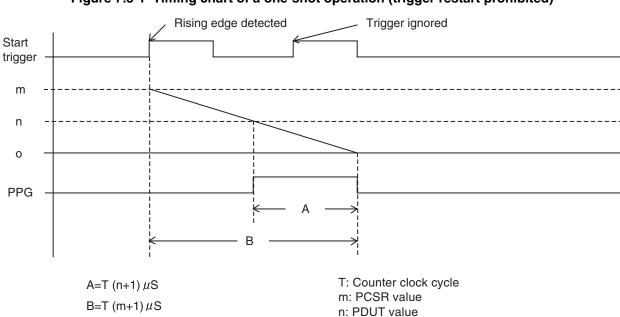
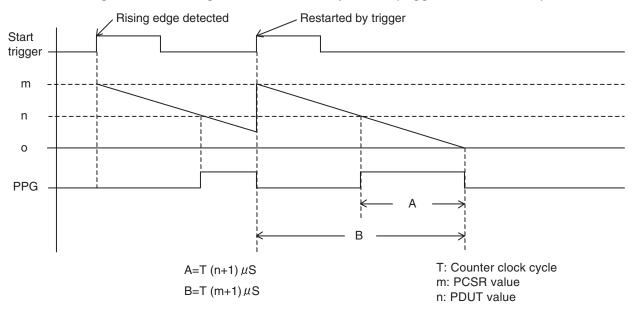



Figure 7.5-1 Timing chart of a one-shot operation (trigger restart prohibited)

O When restart is enabled

Figure 7.5-2 "Timing chart of one-shot operation (trigger restart enabled)" shows the timing chart of a one-shot operation when a trigger restart is enabled.

Figure 7.5-2 Timing chart of one-shot operation (trigger restart enabled)

7.6 PPG Timer Interrupt Source and Timing Chart

This section describes interrupt sources and provides the related timing charts.

Interrupt sources and timing chart (PPG output: normal polarity)

Figure 7.6-1 "PPG timer interrupt sources and timing chart" shows the PPG timer interrupt sources and a timing chart.

A maximum time of 2.5 T (T: counter clock cycle) is required from when a start trigger is activated to when the counter value is loaded.

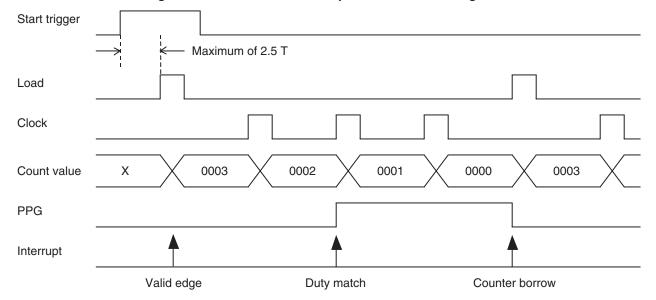
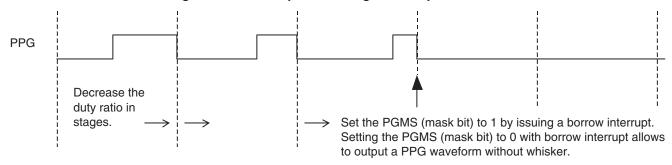
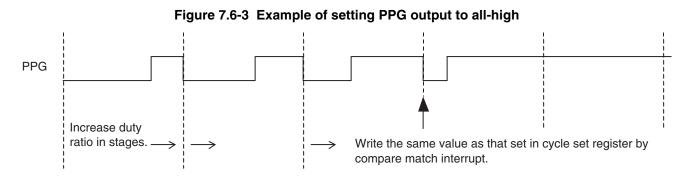



Figure 7.6-1 PPG timer interrupt sources and timing chart

Examples for setting PPG output to all-low or all-high


Figure 7.6-2 "Example of setting PPG output to all-low" shows how to set the PPG output to all-low.

O Example of setting PPG output to all-high level

Figure 7.6-3 "Example of setting PPG output to all-high" shows an example of setting PPG

output to all-high level.

7.7 Activating Multiple Channels by Using the General Control Register

You can activate multiple channels at the same time by selecting the start trigger with the GCN10.

This section shows an example of how GCN20 is set to activate channels via software.

Activating multiple channels with the GCN

[Setting procedure]

- 1) Set the cycle in the PCSR.
- 2) Set the duty ratio in the PDUT.

Note that the setting must follow the order of PCSR followed by PDUT.

3) Specify the trigger input source for the channel to be activated with GCN10.

In this case, the initial setting is kept because GCN20 is used.

(ch0 --> EN0, ch1 --> EN1, ch2 --> EN2, ch3 --> EN3)

4) Set the control status register for the channel to be activated.

- CNTE: 1 --> Enables timer operation.

- STGR: 0 --> Since the channel is activated by GCN20, this bit is not set.
- MDSE: 0 --> Selects PPG operation.
- RTRG: 0 --> Inhibits restart.
- CSK1, 0:00 --> Sets the counter clock to Φ .
- PGMS: 0 --> Does not mask PPG output. (Bits 8:0 --> Any value can be set because these bits are unused.)
- EGS1, 0:01 --> Activates channel at a rising edge
- IREN: 1 --> Enables interrupt request.
- IRQF: 0 --> Clears interrupt source.
- IRS1, 0:01 --> Issues interrupt request when counter borrow occurs.
- PPEN: 1 --> Enables PPG output. (setting of port function register)
- OSEL: 0 --> Sets normal polarity.

5) Activate a start trigger by writing data to GCN20.

To activate ch0 and ch1 at the same time with the above settings, set the EN0 and EN1 bits of GCN20 to 1. A rising edge is generated and pulses are output from PPG0 and PPG1.

■ When the 16-bit reload timer is used for activation

Specify the 16-bit reload timer as a source in GCN1 (see 3) above). Start the 16-bit reload timer instead of writing data to GCN20 in 5) above.

In addition, set the control status register as follows:

- RTRG: 1 --> Enables restart.
- EGS1, 0:11 --> Enables activation by both edges

By setting 16-bit reload timer output to toggle mode, the PPG timer can be restarted at fixed intervals.

7.8 Notes on Use of the PPG Timer

This section gives notes on using the PPG timer.

Precautions when Using

- If the interrupt request flag set timing and clear timing are simultaneous, the flag setting operation overrides the flag clearing operation.
- The values in bits 11 and 10 in the PPG control register (the CKS1 and CKS0 count lock select bits) are reflected as soon as they are written. Stop the PPG timer counting when updating their setting.
- The PPG down counter (PPGC: 16 bit down counter) prefers loading to counting if they are wanted simultaneously.

CHAPTER 7 PPG TIMER

CHAPTER 8 U-TIMER

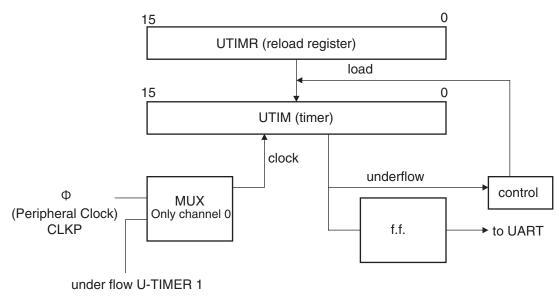
This chapter describes the U-TIMER, the configuration and functions of registers, and U-TIMER operation.

- 8.1 "Overview of the U-TIMER"
- 8.2 "U-TIMER Registers"
- 8.3 "U-TIMER Operation"

8.1 Overview of the U-TIMER

This section provides an overview and a block diagram of the U-TIMER (16 bit timer for UART baud rate generation).

Overview of the U-TIMER


The U-TIMER is a 16-bit timer used to generate the baud rate for the UART. Use a combination of a chip operating frequency and a reload value of the U-TIMER to specify a baud rate.

The U-TIMER, which generates an interrupt upon a counter underflow, can be used as an interval timer.

The MB91301 series has three built-in U-TIMER channels. When used as an interval timer, two sets of U-TIMERs can be cascaded to count a maximum interval of $2^{32} \times \Phi$. Only the combinations of Channels 0 and 1 and Channels 0 and 2 can be connected in cascade fashion.

Block Diagram

Figure 8.1-1 shows the block diagram of U-TIMER.

Figure 8.1-1 Block Diagram of the U-TIMER

8.2 U-TIMER Registers

This section describes the configuration and functions of the registers used by the U-TIMER.

U-TIMER Registers

Figure 8.2-1 "U-TIMER Registers" shows the registers used by the U-TIMER.

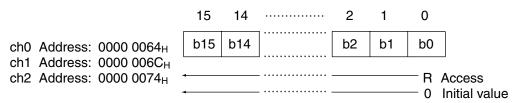
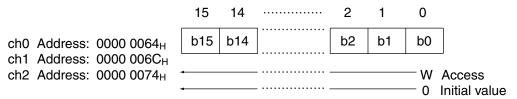

15	8 7		0
	UTIM		
	UTIMR		
		UTIMC	

Figure 8.2-1 U-TIMER Registers

■ U-TIMER (UTIM)

Figure 8.2-2 "Bit Configuration of the U-TIMER (UTIM)" shows the bit configuration of the U-TIMER (UTIM).

Figure 8.2-2 Bit Configuration of the U-TIMER (UTIM)



UTIM indicates the timer value. Use a 16-bit transfer instruction to access this register.

Reload Register (UTIMR)

Figure 8.2-3 "Bit Configuration of the Reload Register (UTIMR)" shows the bit configuration of the reload register (UTIMR).

Figure 8.2-3 Bit Configuration of the Reload Register (UTIMR)

UTIMR is a register that stores the value to be reloaded into UTIM if UTIM underflows.

Use a 16-bit transfer instruction to access this register.

CHAPTER 8 U-TIMER

■ U-TIMER Control Register (UTIMC)

Figure 8.2-4 "Bit Configuration of the U-TIMER Control Register (UTIMC)" shows the bit configuration of the U-TIMER control register (UTIMC).

Figure 8.2-4 Bit Configuration of the U-TIMER Control Register (UTIMC)

	7	6	5	4	3	2	1	0	
	UCC1			UTIE	UNDR	CLKS	UTST	UTCR	
ch0 Address: 0000 0067 _H									
ch1 Address: 0000 006F _H	R/W			R/W	R/W	R/W	R/W	R/W	Access
ch2 Address: 0000 0077 _H	0		—	0	0	0	0	1	Initial value

UTIMC controls the operation of the U-TIMER.

Access with byte transfer instruction.

Bit details of U-TIMER Control Register (UTIMC)

The following describes the functions of the U-TIMER control register (UTIMC) bits.

[Bit 7] UCC1 (U-timer Count Control 1): Control for counting method

This bit controls the U-TIMER counting method.

UCC1	Operation							
0	Normal operation α =2n+2 [initial value]							
1	+1 mode α=2n+3							

n is the setting value of U-TIMR.

 α is the cycle of the output clock for UART.

The U-TIMER can set a normal cycle, 2(n+1) as well as an odd-numbered division for the UART.

Set UCC1 to 1 to generate a cycle of 2n+3.

Examples:

- 1. UTIMR=5, UCC1=0 --> Generation cycle =2n+2= 12 cycles
- 2. UTIMR=25, UCC1=1 --> Generation cycle =2n+3= 53 cycles
- 3. UTIMR=60, UCC1=0 --> Generation cycle =2n+2=122 cycles

Set UCC1 to 0 to use the U-TIMER as the interval timer.

[Bits 6, 5] (reserved)

This bit is reserved.

[Bit 4] UTIE (U-TIMER Interrupt Enable): Interrupt enable by underflow

This bit is the interrupt enable bit for a U-TIMER underflow.

UTIE	Operation							
0	Interrupt disabled [initial value]							
1	Interrupt enabled							

[Bit 3] UNDR (UNDeR flow flag): Indicates generating underflow

This bit indicates that an underflow has occurred.

If the UNDR bit is set while the UTIE bit of bit 4 is set to 1, an underflow interrupt occurs. The UNDR bit is cleared upon a reset or if 0 is written to it.

For a read by a read modify write instruction, 1 is always read.

Writing 1 to the UNDR has no effect.

[Bit 2] CLKS (clock select): Cascade specification

This bit is the cascade specification bit for Channels 0 and 1 of the U-TIMER.

CLKS	Operation
0	Uses a peripheral clock (Φ) as the clock source. [initial value]
1	Uses an underflow signal of Channel 0 as the U-TIMER source clock timing. *

*: f.f. shown in the block diagram

CLKS is valid only for Channels 1 and 2. This bit must always be set to 0 for Channel 0.

 Φ (Peripheral clock = CLKP) has a different cycle depending on the gear setting.

[Bit 1] UTST (U-TIMER STart): Operation enable

This bit is the U-TIMER operation enable bit.

UTST	Operation
0	Stopped. Writing 0 during operation stops running of the U-TIMER. [initial value]
1	Operated. Writing 1 during operation does not stop the U-TIMER.

[Bit 0] UTCR (U-TIMER CleaR)

Writing 0 to UTCR clears the U-TIMER to 0000_{H} (also clears the f.f. to 0).

The read value is always 1.

■ Precautions on the U-TIMER Control Register (UTIMC)

- In the stop state, assert the start bit UTST (started) to automatically reload data.
- In the stop state, assert both the clear bit UTCR and the start bit UTST at the same time to clear the counter to 0 and generate an underflow in the count-down immediately after the counter is cleared.
- During operation, the clear bit UTCR is asserted to clear the counter to 0. As a result, a short, whisker-like pulse may be output in the output waveform, possibly causing the UART or U-TIMER on the master side in cascade mode to malfunction. While the output clock is being used, do not clear it using the clear bit.
- In cascade mode, setting the slave-side UTIMR (reload register) to 0 or 1 causes the count to be performed incorrectly.
- In the timer stop state, assert both bit 1 (U-TIMER start bit: UTST) and bit 0 (U-TIMER clear bit: UTCR) of the U-TIMER control register at the same time to set bit 3 (underflow flag: UNDR) of this register when the counter is loaded after it has been cleared. At this timing, the internal baud rate clock is set to High level.
- If the device attempts to set and clear the interrupt request flag at the same time, the flag is set and the clear operation becomes ineffective.
- If you select not to use ch0 in cascade mode or use this module only as the timer function, always write 0 to bit 2 (Reference clock selection bit: CLKS). Additionally, change the setting of the CLKS bit when this module has stopped.
- If the device attempts to write to and reload the data into the U-TIMER reload register at the same time, old data is loaded into the counter. New data is loaded into the counter only in the next reload timing.
- If the device attempts to clear and load U-TIMER at the same time, the timer clear operation takes precedence.

8.3 U-TIMER Operation

This section describes calculation of a baud rate for the U-TIMER and the timing in cascade mode.

Calculation of Baud Rate

The UART uses the underflow flip-flop (f.f. in the block diagram) of the corresponding U-TIMER (from U-TIMER0 to UART0 or from U-TIMER1 to UART1 or from U-TIMER2 to UART2) as the clock source for baud rates.

O Asynchronous (start-stop synchronization) mode

The UART uses the U-TIMER output divided by 16.

[If UCC1=0]

bps =
$$\frac{\Phi}{(2n+2) \times 16}$$

n: UTIMR (reload value) Φ: Peripheral machine clock frequency

[If UCC1=1]

 $bps = \frac{\Phi}{(2n+3) \times 16}$ (Varies depending on the gear) Maximum bps 34 MHz 351,250 bps, 68 MHz 1,062,500 bps

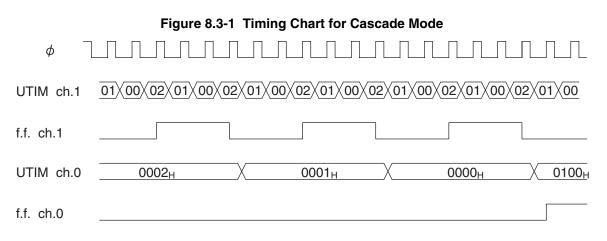
○ CLK synchronous mode

[If UCC1=0]

bps =
$$\frac{\Phi}{(2n+2)}$$

n: UTIMR (reload value)
 Φ : Peripheral machine clock frequency

[If UCC1=1]


bps = $\frac{\Phi}{(2n+3)}$ (Varies depending on the gear)

Maximum bps 34 MHz 8,500,000bps, 68 MHz 17,000,000 bps

■ Cascade Mode

Channels 0 and 1 of the U-TIMER can be used in cascade mode.

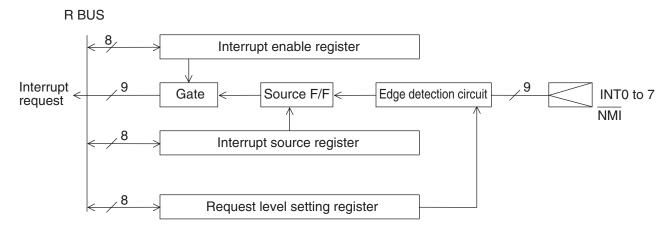
Figure 8.3-1 "Timing Chart for Cascade Mode" shows a sample timing chart for when UTIMR ch.0 is set to 0100_{H} and UTIMR ch.1 is set to 0002_{H} .

CHAPTER 9 EXTERNAL INTERRUPT AND NMI CONTROLLER

This chapter describes the overview, the configuration and functions of registers, and operation of the external interrupt and NMI controller.

- 9.1 "Overview of the External Interrupt and NMI Controller"
- 9.2 "External Interrupt and NMI Controller Registers"
- 9.3 "Operation of the External Interrupt and NMI Controller"


9.1 Overview of the External Interrupt and NMI Controller


The external interrupt controller is a block that controls external interrupt requests input to $\overline{\text{NMI}}$ and $\overline{\text{INT0}}$ to 7.

H level, L level, rising edge, or falling edge can be selected as the level of a request to be detected (except for NMI).

Block Diagram of the External Interrupt and NMI Controller

Figure 9.1-1 "Block Diagram of the External Interrupt and NMI Controller" shows a block diagram of the external interrupt and NMI controller.

9.2 External Interrupt and NMI Controller Registers

This section describes the configuration and functions of the registers used by the external interrupt and NMI controller.

External Interrupt and NMI Controller Registers

Figure 9.2-1 "External Interrupt and NMI Controller Registers" shows the registers used by the external interrupt and NMI controller.

bit	7	6	5	4	3	2	1	0	
	EN7	EN6	EN5	EN4	EN3	EN2	EN1	EN0	External interrupt enable register (ENIR)
bit	15	14	13	12	11	10	9	8	External interrupt course
	ER7	ER6	ER5	ER4	ER3	ER2	ER1	ER0	External interrupt source register (EIRR)
bit	15	14	13	12	11	10	9	8	
	LB7	LA7	LB6	LA6	LB5	LA5	LB4	LA4	
bit	7	6	5	4	3	2	1	0	Request level setting register (ELVR)
	LB3	LA3	LB2	LA2	LB1	LA1	LB0	LA0	

Figure 9.2-1 External Interrupt and NMI Controller Registers

9.2.1 Interrupt Enable Register (ENIR)

This section describes the bit configuration and function of the interrupt enable register (ENIR).

■ Interrupt Enable Register (ENIR: ENable Interrupt Request Register)

Figure 9.2-2 "Bit Configuration of the Interrupt Enable Register (ENIR)" shows the bit configuration of the interrupt enable register (ENIR)

Figure 9.2-2 Bit Configuration of the Interrupt Enable Register (ENIR)

bit	7	6	5	4	3	2	1	0	Initial value
Address: 000041 _H	EN7	EN6	EN5	EN4	EN3	EN2	EN1	EN0	00000000B
	R/W								

The interrupt enable register (ENIR) performs mask control for external interrupt request output.

Output for an interrupt request is enabled based on the bit in this register to which 1 has been written (INT0 enable is controlled by EN0), after which the interrupt request is output to the interrupt controller. The pin corresponding to the bit to which 0 is written holds the interrupt source but does not generate a request to the interrupt controller.

Note:

No mask bit exists for NMI.

9.2.2 External Interrupt Source Register (EIRR)

This section describes the bit configuration and functions of the external interrupt source register EIRR.

External Interrupt Source Register (EIRR: External Interrupt Request Register)

Figure 9.2-3 "Bit Configuration of the External Interrupt Source Register (EIRR)" shows the bit configuration of the external interrupt source register (EIRR).

Figure 9.2-3 Bit Configuration of the External Interrupt Source Register (EIRR)

bit	15								Initial value
Address: 000040 _H	ER7	ER6	ER5	ER4	ER3	ER2	ER1	ER0	0000000 _B
	R/W								

The EIRR register, when it is read, indicates that a corresponding external interrupt request exists. When it is written to, the contents of the flip-flop (NMI flag) that indicates this request are cleared. If 1 is read from the EIRR register, an external interrupt request exists at the pin corresponding to this bit.

Write 0 to this register to clear the request flip-flop of the corresponding bit.

Writing 1 to this has no effect.

For a read by a read modify write instruction, 1 is read.

Note:

The NMI flag cannot be read or written to by a user.

For information about the NMI flag, see "NMI" in Section 9.3 "Operation of the External Interrupt and NMI Controller".

When the INT0 to INT7 pins input the HIGH level in the stop state, their respective ER0 to ER7 bits are set to 1.

9.2.3 External Interrupt Request Level Setting Register (ELVR)

This section describes the bit configuration and functions of the external interrupt request level setting register (ELVR).

External Interrupt Request Level Setting Register (ELVR: External Level Register)

Figure 9.2-4 "Bit Configuration of the External Interrupt Request Level Setting Register (ELVR)" shows the bit configuration of the external interrupt request level setting register (ELVR).

Figure 9.2-4 Bit Configuration of the External Interrupt Request Level Setting Register (ELVR)

bit	15	14	13	12	11	10	9	8	Initial value
Address: 000042 _H	LB7	LA7	LB6	LA6	LB5	LA5	LB4	LA4	00000000 _B
	R/W								
	_		_						
bit	7	6	5	4	3	2	1	0	Initial value
bit Address: 000043 _H	7 LB3	6 LA3	5 LB2	4 LA2	3 LB1	2 LA1	1 LB0	0 LA0	Initial value 00000000 _B

The external interrupt request level setting register (ELVR) selects how a request is detected. Two bits are assigned to each of INT0 to 7, which results in the settings shown in Table 9.2-1 "Settings of the LBn and LAn Bits". Even though the bits of the EIRR are cleared while the request input is a level, the pertinent bits are set again as long as the input is an active level.

Table 9.2-1 Settings of the LBn and Lan Bits

LBx	LAx	Operation
0	0	L level indicates the existence of a request.
0	1	H level indicates the existence of a request.
1	0	A rising edge indicates the existence of a request.
1	1	A falling edge indicates the existence of a request.

Notes:

A falling edge is always detected at NMI (except in the stop state).

In the stop state, the L level is detected.

INT should be set "H" level at stop.

9.3 Operation of the External Interrupt and NMI Controller

After a request level and an enable register are specified, if a request specified in the external interrupt request level setting register (ELVR) is input to the corresponding pin, this module generates an interrupt request signal to the interrupt controller.

Operation of an External Interrupt

For simultaneous interrupt requests, the interrupt controller determines the interrupt request with the highest priority and generates an interrupt for it.

Figure 9.3-1 "External Interrupt Operation" shows external interrupt operation.

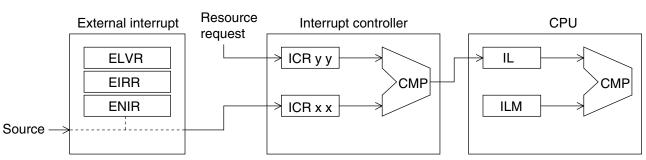


Figure 9.3-1 External Interrupt Operation

Return from Standby

To use an external interrupt to return from the stop state, use an H-level request as the input request regardless of setting the external interrupt request level setting register (ELVR).

Note:

Cut off the pull-up for the INT0 to 7 pin in the stop state.

Operating Procedure for an External Interrupt

Set up a register located inside the external interrupt block as follows:

- 1. Disable the target bit in the enable register.
- 2. Set the target bit in the request level setting register.
- 3. Clear the target bit in the interrupt register.
- 4. Enable the target bit in the enable register.

Simultaneous writing of 16-bit data is supported for steps 3) and 4).

Before setting a register in this module, you must disable the enable register. In addition, before enabling the enable register, you must clear the interrupt source register. This procedure is required to prevent an interrupt source from occurring by mistake while a register is being set or an interrupt is enabled.

External Interrupt Request Level

If the request level is an edge request, a pulse width of at least three machine cycles (peripheral clock machine cycles) is required to detect an edge.

If the request input level is a level setting and request input arrives from outside and is then cancelled, the request to the interrupt controller remains active because a source holding circuit exists internally.

The interrupt source register must be cleared to cancel a request to the interrupt controller.


Figure 9.3-2 "Clearing the Source Holding Circuit when a Level is Set" shows clearing of the source holding circuit when a level is set. Figure 9.3-3 "Interrupt Source and Interrupt Request to Interrupt Controller when Interrupts are Enabled" shows an interrupt source and an interrupt request to the interrupt controller when interrupts are enabled.

Figure 9.3-2 Clearing the Source Holding Circuit when a Level is Set

Holds a source while it is not cleared

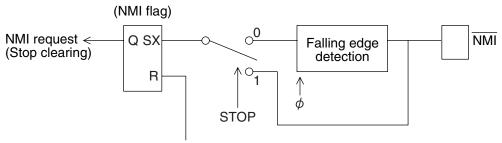
Figure 9.3-3 Interrupt Source and Interrupt Request to Interrupt Controller when Interrupts are Enabled

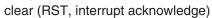
NMI

An NMI has the highest level among the user interrupts and usually cannot be masked. However, as an exception, if an NMI is activated before it is set in ILM, the CPU dose not accept the NMI but only detects the NMI source. The NMI source is then held until ILM is set to the level that allows the NMI to be accepted. For this reason, before using an NMI, be sure to set ILM to 16 or more after a reset.

As the internal source flag of NMI cannot be accessed by the CPU, the $\overline{\text{NMI}}$ pin must be maintained at the level "H" after a reset.

An NMI is accepted under the following conditions:


- Normal: falling edge
- STOP mode: L level

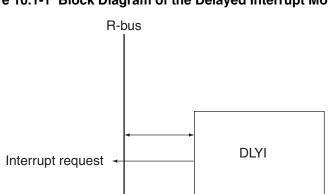

An NMI can be used to clear stop mode. Inputting the L level in the stop state clears the stop state and causes the oscillation stabilization wait time to start. To perform NMI processing after clearing the stop state, maintain the $\overline{\text{NMI}}$ pin at the L level and return it to the H level in the NMI processing routine.

The NMI request detector has an NMI flag that is set for an NMI request and is cleared only if an interrupt for the NMI itself is accepted or a reset occurs. Note that this bit is not readable or writable.

Figure 9.3-4 "NMI Request Detector" shows the NMI request detector.

CHAPTER 10 DELAYED INTERUPT MODULE

This chapter describes the functions and operation of the delayed interrupt module.


- 10.1 "Overview of the Delayed Interrupt Module"
- 10.2 "Delayed Interrupt Module Registers"
- 10.3 "Operation of the Delayed Interrupt Module"

10.1 Overview of the Delayed Interrupt Module

The delayed interrupt module generates an interrupt for switching tasks. Use this module to allow a software program to generate an interrupt request for the CPU or to clear an interrupt request.

Block Diagram of the Delayed Interrupt Module

Figure 10.1-1 "Block Diagram of the Delayed Interrupt Module" shows a block diagram of the delayed interrupt module.

Figure 10.1-1 Block Diagram of the Delayed Interrupt Module

10.2 Delayed Interrupt Module Registers

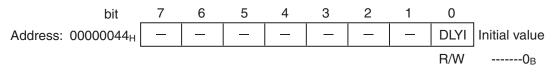
This section describes the configuration and functions of the registers used by the delayed interrupt module.

Delayed Interrupt Module Registers

The delayed interrupt module includes the delayed interrupt control register (DICR).

Figure 10.2-1 "Configuration of the Delayed Interrupt Control Register (DICR)" shows the configuration of the delayed interrupt control register (DICR).

Figure 10.2-1 Configuration of the Delayed Interrupt Control Register (DICR)


bit	7	6	5	4	3	2	1	0	Delayed interrupt control register
	—	—	—	-	-	—	_	DLYI	(DICR)

Delayed Interrupt Control Register (DICR)

The delayed interrupt control register (DICR: Delayed Interrupt Control Register) controls delayed interrupts.

Figure 10.2-2 "Bit Configuration of the Delayed Interrupt Control Register (DICR)" shows the bit configuration of the delayed interrupt control register (DICR).

Figure 10.2-2 Bit Configuration of the Delayed Interrupt Control Register (DICR)

The following describes thebit functions of the delayed interrupt control register (DICR) bits.

[Bit 0] DLYI

This bit controls the generation and clearing of the pertinent interrupt source.

Table 10.2-1 "Function for Generation and Clearing of the Pertinent Interrupt Source" shows the function for the generation and clearing of the pertinent interrupt source.

Table 10.2-1 Functions for Generation and Clearing the Pertinent Interrupt Source.

DLYI	Description					
0	A delayed interrupt source is cleared or no request exists. [initial value]					
1	A delayed interrupt source is generated.					

10.3 Operation of the Delayed Interrupt Module

A delayed interrupt refers to an interrupt generated for switching tasks. Use this function to allow a software program to generate an interrupt request for the CPU or to clear an interrupt request.

Interrupt Number

A delayed interrupt is assigned to the interrupt source corresponding to the largest interrupt number.

On the MB91301 series, a delayed interrupt is assigned to interrupt number 63 (3F_H).

DLYI Bit of DICR

Write 1 to this bit to generate a delayed interrupt source. Write 0 to it to clear a delayed interrupt source.

This bit is the same as the interrupt source flag for a normal interrupt. Therefore, clear this bit and switch tasks in the interrupt routine.

CHAPTER 11 INTERRUPT CONTROLLER

This chapter describes the orverview of the interrupt controller, the configuration and functions of registers, and interrupt controller operation. It also presents an example of using the hold request cancellation request function.

- 11.1 "Overview of the Interrupt Controller"
- 11.2 "Interrupt Controller Registers"
- 11.3 "Interrupt Controller Operation"
- 11.4 "Example of Using the Hold Request Cancellation Request Function (HRCR)"

11.1 Overview of the Interrupt Controller

The interrupt controller controls interrupt acceptance and arbitration processing.

Hardware Configuration of the Interrupt Controller

The interrupt controller consists of the following components:

- Interrupt control registers (ICR) register
- Interrupt priority decision circuit
- Interrupt level and interrupt number (vector) generator
- HOLD request cancellation request generator

Major Functions of the Interrupt Controller

The interrupt controller has the following major functions:

- Detecting NMI requests and interrupt requests
- Deciding priority (using a level or number)
- Passing to the CPU an interrupt level based on the decision result to provide information about the interrupt source
- Passing to the CPU an interrupt number based on the decision result to provide information about the interrupt source
- Instruction for return from stop mode due to the occurrence of an interrupt with an NMI/ interrupt level other than 11111_B (to CPU)
- · Generating a HOLD request cancellation request for the bus master

Block Diagram

Figure 11.1-1 "Block Diagram of the Interrupt Controller" shows a block diagram of the interrupt controller.

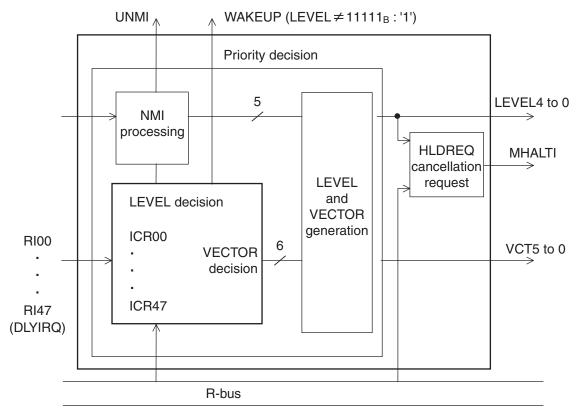


Figure 11.1-1 Block Diagram of the Interrupt Controller

11.2 Interrupt Controller Registers

This section describes the configuration and functions of the registers used by the interrupt controller.

Interrupt Controller Registers

Figure 11.2-1 "Interrupt Controller Registers" shows the registers of the interrupt controller.

bit	7	6	5	4	3	2	1	0	Register name
Address: 00000440 _H	_	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR00
Address: 00000441 _H	-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR01
Address: 00000442 _H	_	-		ICR4	ICR3	ICR2	ICR1	ICR0	ICR02
Address: 00000443 _H	-	-		ICR4	ICR3	ICR2	ICR1	ICR0	ICR03
Address: 00000444 _H	-	-		ICR4	ICR3	ICR2	ICR1	ICR0	ICR04
Address: 00000445 _H	-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR05
Address: 00000446 _H	-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR06
Address: 00000447 _H	-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR07
Address: 00000448 _H	-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR08
Address: 00000449 _H	_	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR09
Address: 0000044A _H	_	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR10
Address: 0000044B _H	_	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR11
Address: 0000044C _H	_	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR12
Address: 0000044D _H	-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR13
Address: 0000044E _H	_	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR14
Address: 0000044F _H	_	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR15
Address: 00000450 _H	_	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR16
Address: 00000451 _H	_	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR17
Address: 00000452 _H	_	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR18
Address: 00000453 _H	_	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR19
Address: 00000454 _H	_	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR20
Address: 00000455 _H	-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR21
Address: 00000456 _H	-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR22
Address: 00000457 _H	_	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR23
Address: 00000458 _H	-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR24
Address: 00000459 _H	-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR25
Address: 0000045A _H	_	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR26
Address: 0000045B _H	_	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR27
Address: 0000045C _H	_	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR28
Address: 0000045D _H	_	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR29
Address: 0000045E _H	_	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR30
Address: $0000045F_H$	-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR31

Figure 11.2-1 Interrupt Controller Registers (Continued on next page)

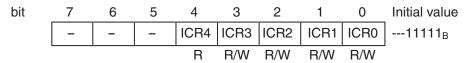
CHAPTER 11 INTERRUPT CONTROLLER

bit	7	6	5	4	3	2	1	0	Register name
Address: 00000460 _H	-	-		ICR4	ICR3	ICR2	ICR1	ICR0	ICR32
Address: 00000461 _H	-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR33
Address: 00000462 _H	-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR34
Address: 00000463 _H	-	-		ICR4	ICR3	ICR2	ICR1	ICR0	ICR35
Address: 00000464 _H	-	-		ICR4	ICR3	ICR2	ICR1	ICR0	ICR36
Address: 00000465 _H	-	-		ICR4	ICR3	ICR2	ICR1	ICR0	ICR37
Address: 00000466 _H	-	-		ICR4	ICR3	ICR2	ICR1	ICR0	ICR38
Address: 00000467 _H	-	-		ICR4	ICR3	ICR2	ICR1	ICR0	ICR39
Address: 00000468 _H	-	-		ICR4	ICR3	ICR2	ICR1	ICR0	ICR40
Address: 00000469 _H	-	-		ICR4	ICR3	ICR2	ICR1	ICR0	ICR41
Address: 0000046A _H	-	-		ICR4	ICR3	ICR2	ICR1	ICR0	ICR42
Address: 0000046B _H	-	-		ICR4	ICR3	ICR2	ICR1	ICR0	ICR43
Address: 0000046C _H	-	-		ICR4	ICR3	ICR2	ICR1	ICR0	ICR44
Address: 0000046D _H	-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR45
Address: 0000046E _H	-	-		ICR4	ICR3	ICR2	ICR1	ICR0	ICR46
Address: 0000046F _H	-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR47

Address: 0000045_H

MHALTI

LVL4 LVL3 LVL2 LVL1 LVL0 HRCL _ -


11.2.1 Interrupt Control Register (ICR)

An interrupt control register is provided for each of the interrupt input and sets the interrupt level of the corresponding interrupt request.

Bit Configuration of Interrupt Control Register (ICR)

Figure 11.2-2 "Bit Configuration of the Interrupt Control Register (ICR)" shows the bit configuration of the interrupt control register (ICR: Interrupt Control Register).

Figure 11.2-2 Bit Configuration of the Interrupt Control Register (ICR)

Detailed Bit of Interrupt Control Register (ICR)

The following describes the bit functions of the interrupt control register (ICR).

[Bits 4 to 0] ICR4 to 0 interrupt level setting

These bits, which are the interrupt level setting bits, specify the interrupt level of the corresponding interrupt request.

If an interrupt request has an interrupt level specified in this register that exceeds the level mask value specified in the interrupt level mask register (ILM) of the CPU, it is masked by the CPU.

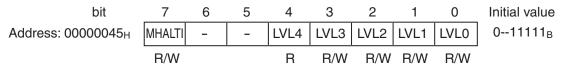
These bits are initialized to 11111_B by a reset.

Table 11.2-1 "Correspondence Between Possible Interrupt Level Setting Bits and Interrupt Levels" shows the correspondence between possible interrupt level setting bits and interrupt levels.

ICR4	ICR3	ICR2	ICR1	ICR0	Interrupt level				
0	0	0	0	0	0				
0	1	1	1	0	14	Reserved for system			
0	1	1	1	1	15	NMI			
1	0	0	0	0	16	Maximum level that can be set			
1	0	0	0	1	17	(High)			
1	0	0	1	0	18	↑			
1	0	0	1	1	19				
1	0	1	0	0	20				
1	0	1	0	1	21				
1	0	1	1	0	22				
1	0	1	1	1	23				
1	1	0	0	0	24				
1	1	0	0	1	25				
1	1	0	1	0	26				
1	1	0	1	1	27				
1	1	1	0	0	28				
1	1	1	0	1	29				
1	1	1	1	0	30	(Low)			
1	1	1	1	1	31	Interrupt disabled			

 Table 11.2-1
 Correspondence Between Possible Interrupt Level Setting Bits and Interrupt Levels

Note: The LVL4 bit is always 1; 0 cannot written to it.


11.2.2 Hold Request Cancellation Request Level Setting Register (HRCL)

The hold request cancellation request level setting register (HRCL) is a level setting register used to generate a hold request cancellation request.

■ Bit Configuration of Hold Request Cancellation Request Level Setting Register (HRCL)

Figure 11.2-3 "Bit Configuration of the Hold Request Cancellation Request Level Setting Register (HRCL)" shows the bit configuration of the hold request cancellation request level setting register (HRCL).

Figure 11.2-3 Bit Configuration of the Hold Request Cancellation Request Level Setting Register (HRCL)

Detailed Bit of Hold Request Cancellataion Request Level Setting Register (HRCL)

The following describes the bit functions of the hold request cancellation request level setting register (HRCL).

[Bit 7] MHALTI: DAM transfer disable by NMI request

This bit is the DMA transfer disable bit controlled by an NMI request. An NMI request sets this bit to 1. Write 0 to this bit to clear it. At the end of an NMI routine, clear this bit the same way it would be cleared in a normal interrupt routine.

[Bits 4 to 0] LVL4 to 0: Interrupt level setting

These bits set the interrupt level used to issue a hold request cancellation request to the bus master.

If an interrupt request with a higher level than the level specified in the HRCL register occurs, issue a hold request cancellation request to the bus master.

The LVL4 bit is always 1; 0 cannot be written to it.

11.3 Interrupt Controller Operation

This section describes the following items regarding operation of the interrupt controller:

- Priority decision
- NMI
- Hold request cancellation request
- Return from standby mode (stop/sleep)

Priority Decision

The interrupt controller selects the interrupt source with the highest priority from among those that exist simultaneously and outputs the interrupt level and the interrupt number of this source to the CPU.

The following shows the priority decision criteria for interrupt sources:

- NMI
- Source that meets the following conditions:
 - Source with a value other than 31 as the interrupt level (31 means interrupts disabled)
 - Source with the smallest value for the interrupt level
 - · Source with the smallest interrupt number that satisfies the both conditions above

If no interrupt source is selected according to the above decision criteria, 31 (11111_B) is output as the interrupt level. The interrupt number at this time is undefined.

Table 11.3-1 "Relationship Between Interrupt Sources, Interrupt Numbers, and Interrupt Levels" shows the relationship between interrupt sources, interrupt numbers and interrupt levels.

Table 11.3-1 Relationship Bet	tween Interrupt Sources, Interrupt Nun	nbers, and Interrupt
Levels		

	Interru	ıpt number	Interrupt	Offeet	Default	
Interrupt source	Decimal	Hexadecimal	level	Offset	address of TBR	RN
Reset	0	00	-	3FC _H	000FFFFC _H	-
Mode vector	1	01	-	3F8 _H	000FFFF8 _H	-
Reserved for system	2	02	-	3F4 _H	000FFFF4 _H	-
Reserved for system	3	03	-	3F0 _H	000FFFF0 _H	-
Reserved for system	4	04	-	3EC _H	000FFFEC _H	-
Reserved for system	5	05	-	3E8 _H	000FFFE8 _H	-
Reserved for system	6	06	-	3E4 _H	000FFFE4 _H	-
No-coprocessor trap	7	07	-	3E0 _H	000FFFE0 _H	-
Coprocessor error trap	8	08	-	3DC _H	000FFFDC _H	-
INTE instruction	9	09	_	3D8 _H	000FFFD8 _H	_

Table 11.3-1 Relationship Between Interrupt Sources, Interrupt Numbers, and Interrupt Levels (Continued)

	Interru	ıpt number	Interrupt		Default	
Interrupt source	Decimal	Hexadecimal	level	Offset	address of TBR	RN
Instruction break exception	10	0A	_	3D4 _H	000FFFD4 _H	_
Operand break trap	11	0B	_	3D0 _H	000FFFD0 _H	_
Step trace trap	12	0C	-	3CC _H	000FFFCC _H	
NMI request (tool)	13	0D	_	3C8 _H	000FFFC8 _H	_
Undefined instruction exception	14	0E	-	3C4 _H	000FFFC4 _H	-
NMI request	15	0F	Flxed to 15(F _H)	3C0 _H	000FFFC0 _H	_
External Interrupt 0	16	10	ICR00	3BC _H	000FFFBC _H	6
External Interrupt 1	17	11	ICR01	3B8 _H	000FFFB8 _H	7
External Interrupt 2	18	12	ICR02	3B4 _H	000FFFB4 _H	11
External Interrupt 3	19	13	ICR03	3B0 _H	000FFFB0 _H	12
External Interrupt 4	20	14	ICR04	3AC _H	000FFFAC _H	-
External Interrupt 5	21	15	ICR05	3A8 _H	000FFFA8 _H	-
External Interrupt 6	22	16	ICR06	3A4 _H	000FFFA4 _H	_
External Interrupt 7	23	17	ICR07	3A0 _H	000FFFA0 _H	—
Reload Timer 0	24	18	ICR08	39C _H	000FFF9C _H	8
Reload Timer 1	25	19	ICR09	398 _H	000FFF98 _H	9
Reload Timer 2	26	1A	ICR10	394 _H	000FFF94 _H	10
UART0 (reception completed)	27	1B	ICR11	390 _H	000FFF90 _H	0
UART1 (reception completed)	28	1C	ICR12	38C _H	000FFF8C _H	1
UART2 (reception completed)	29	1D	ICR13	388 _H	000FFF88 _H	2
UART0 (transmission completed)	30	1E	ICR14	384 _H	000FFF84 _H	3
UART1 (transmission completed)	31	1F	ICR15	380 _H	000FFF80 _H	4
UART2 (transmission completed)	32	20	ICR16	37C _H	000FFF7C _H	5
DMAC0 (end, error)	33	21	ICR17	378 _H	000FFF78 _H	-
DMAC1 (end, error)	34	22	ICR18	374 _H	000FFF74 _H	
DMAC2 (end, error)	35	23	ICR19	370 _H	000FFF70 _H	-
DMAC3 (end, error)	36	24	ICR20	36C _H	000FFF6C _H	
DMAC4 (end, error)	37	25	ICR21	368 _H	000FFF68 _H	-
A/D	38	26	ICR22	364 _H	000FFF64 _H	15
PPG0	39	27	ICR23	360 _H	000FFF60 _H	13

Table 11.3-1 Relationship Between Interrupt Sources, Interrupt Numbers, and Interrupt Levels (Continued)

	Interru	upt number	Interrupt	• "	Default	
Interrupt source	Decimal	Hexadecimal	level	Offset	address of TBR	RN
PPG1	40	28	ICR24	35C _H	000FFF5C _H	14
PPG2	41	29	ICR25	358 _H	000FFF58 _H	_
PPG3	42	2A	ICR26	354 _H	000FFF54 _H	_
Reserved for system	43	2B	ICR27	350 _H	000FFF50 _H	-
U-TIMER0	44	2C	ICR28	34C _H	000FFF4C _H	-
U-TIMER1	45	2D	ICR29	348 _H	000FFF48 _H	-
U-TIMER2	46	2E	ICR30	344 _H	000FFF44 _H	-
Timebase timer overflow	47	2F	ICR31	340 _H	000FFF40 _H	-
I ² C I/F0*	48	30	ICR32	33C _H	000FFF3C _H	-
I ² C I/F1*	49	31	ICR33	338 _H	000FFF38 _H	-
Reserved for system	50	32	ICR34	334 _H	000FFF34 _H	
Reserved for system	51	33	ICR35	330 _H	000FFF30 _H	-
16-bit free run timer *	52	34	ICR36	32C _H	000FFF2C _H	-
ICU0 (fetch) *	53	35	ICR37	328 _H	000FFF28 _H	
ICU1 (fetch) *	54	36	ICR38	324 _H	000FFF24 _H	
ICU2 (fetch) *	55	37	ICR39	320 _H	000FFF20 _H	
ICU3 (fetch) *	56	38	ICR40	31C _H	000FFF1C _H	
Reserved for system	57	39	ICR41	318 _H	000FFF18 _H	
Reserved for system	58	ЗA	ICR42	314 _H	000FFF14 _H	-
Reserved for system	59	3B	ICR43	310 _H	000FFF10 _H	-
Reserved for system	60	3C	ICR44	30C _H	000FFF0C _H	-
Reserved for system	61	3D	ICR45	308 _H	000FFF08 _H	-
Reserved for system	62	3E	ICR46	304 _H	000FFF04 _H	-
Delayed interrupt source bit	63	3F	ICR47	300 _H	000FFF00 _H	-
Reserved for system (used in REALOS)	64	40	_	2FC _H	000FFEFC _H	_
Reserved for system (used in REALOS)	65	41	-	2F8 _H	000FFEF8 _H	_
Reserved for system	66	42	-	2F4 _H	000FFEF4 _H	-
Reserved for system	67	43	-	2F0 _H	000FFEF0 _H	-
Reserved for system	68	44	_	2EC _H	000FFEEC _H	-

	Interru	ıpt number	Interrupt	0//	Default	
Interrupt source	Decimal	Hexadecimal	level	Offset	address of TBR	RN
Reserved for system	69	45	-	2E8 _H	000FFEE8 _H	-
Reserved for system	70	46	-	2E4 _H	000FFEE4 _H	-
Reserved for system	71	47	-	2E0 _H	000FFEE0 _H	-
Reserved for system	72	48	-	2DC _H	000FFEDC _H	-
Reserved for system	73	49	-	2D8 _H	000FFED8 _H	-
Reserved for system	74	4A	-	2D4 _H	000FFED4 _H	-
Reserved for system	75	4B	-	2D0 _H	000FFED0 _H	-
Reserved for system	76	4C	-	2CC _H	000FFECC _H	-
Reserved for system	77	4D	-	2C8 _H	000FFEC8 _H	-
Reserved for system	78	4E	-	2C4 _H	000FFEC4 _H	-
Reserved for system	79	4F	-	2C0 _H	000FFEC0 _H	-
Used in INT instruction	80 255	50 FF	-	2BC _H 000 _H	000FFEBC _H I 000FFC00 _H	_

Table 11.3-1 Relationship Between Interrupt Sources, Interrupt Numbers, and Interrupt Levels (Continued)

*: On MB91301 and MB91V301, they are "Reserved for system".

An NMI (Non Maskable Interrupt) has the highest priority among the interrupt sources handled by the interrupt controller. Thus, an NMI is always selected if it occurs at the same time as other interrupt sources.

- If an NMI occurs, the following information is reported to the CPU:
 - Interrupt level: 15 (01111_B)
 - Interrupt number: 15 (0001111_B)
- Detecting an NMI

The external interrupt and NMI module sets and detects an NMI. This module only generates an interrupt level, interrupt number, and MHALTI in response to an NMI request.

• Preventing a DMA transfer occurring due to an NMI

If an NMI request occurs, the MHALTI bit of the HRCL register is set to 1 to prevent DMA transfer. To clear the state preventing DMA transfer, clear the MHALTI bit to 0 at the end of the NMI routine.

Hold Request Cancellation Request (HRCR: Hold Request Cancel Request)

For an interrupt with a higher priority to be processed during CPU hold, the device that has generated the hold request must cancel the request. Set the interrupt level in the HRCL register to be used as the criterion of generating a cancellation request.

O Generation criteria

If an interrupt source with a higher interrupt level than the level specified in the HRCL register occurs, a hold request cancellation request is generated.

- If the interrupt level of the HRCL register is greater than the interrupt level after a priority decision, a cancellation request occurs.
- If the interrupt level of the HRCL register is equal to or less than the interrupt level after a
 priority decision, no cancellation request occurs.

Because the cancellation request remains valid, no DMA transfer occurs unless the interrupt source that has caused the cancellation request is cleared. Be sure to clear the corresponding interrupt source.

If an NMI is used, the cancellation request is valid because the MHALTI bit of the HRCL register is set to 1.

\bigcirc Possible levels

Values that can be set in the HRCL register range from 10000_B to 11111_B, which is the same range as for the ICR.

If this register is set to 11111_B, an cancellation request is issued for all the interrupt levels. If this register is set to 10000_B, an cancellation request is issued only for an NMI.

Table 11.3-2 "Settings of Interrupt Levels at which Hold Request Cancellation Request Occurs" shows the settings of interrupt levels at which a hold request cancellation request occurs.

Table 11.3-2 Settings of Interrupt Levels at which Hold Request Cancellation Request Occurs Image: Cancellation Request Cancellation Request

HRCL register	Interrupt levels at which a cancellation request occurs						
16	NMI only						
17	NMI, Interrupt level 16						
18	NMI, Interrupt levels 16 and 17						
_	_						
31	NMI, Interrupt levels 16 to 30 [initial value]						

After a reset, since DMA transfer is not allowed at any interrupt level, no DMA transfer is performed if an interrupt has occurred. Be sure to set the HRCL register to the necessary value.

CHAPTER 11 INTERRUPT CONTROLLER

Return from Standby Mode (Sleep/Stop)

This module implements a function that causes a return from stop mode if an interrupt request occurs. If at least one interrupt request that includes Nmi occurs (with an interrupt level other than 11111_B) from the peripheral, a return request from stop mode is generated for the clock controller.

Since the priority decision unit restarts operation when a clock is supplied after returning from stop, the CPU executes instructions until the result of the priority decision unit is obtained.

The same operation occurs after a return from the sleep state.

Registers in the interrupt controller can be accessed even in the sleep state.

Note:

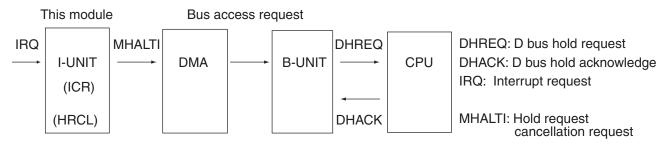
- The device returns from stop mode if an NMI request is issued. However, set an NMI so that valid input can be detected in the stop state.
- Provide an interrupt level of 11111_B in the corresponding peripheral control register for an interrupt source that you do not want to cause return from stop or sleep.

11.4 Example of Using the Hold Request Cancellation Request Function (HRCR)

To allow the CPU to perform high-priority processing during DMA transfer, cancel a hold request for DMA and clear the hold state. In this example, an interrupt is used to cancel a hold request to the DMA, allowing the CPU to perform priority operations.

Control Registers

O HRCL (hold request cancellation request level setting register):


If an interrupt with a higher interrupt level than the level in the HRCL register occurs, a hold request cancellation request is generated for DMA. This register sets the level to be used as the criterion for this purpose.

O ICR:

This register sets a level higher than the level in the HRCL register for the ICR corresponding to the interrupt source that will be used.

Hardware Configuration

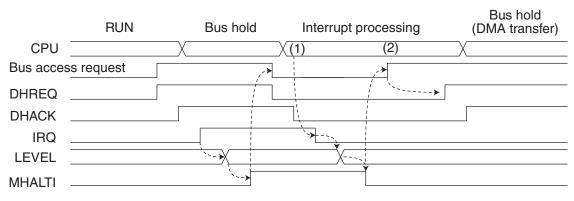

The flow of signals is as follows.

Figure 11.4-1 Flow of Signals

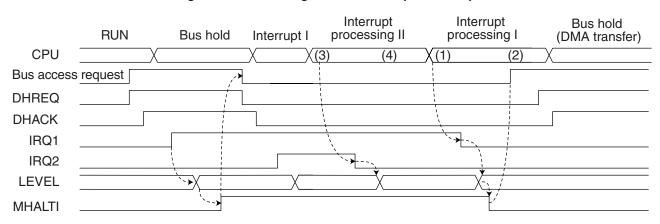
Hold Request Cancellation Request Sequence

Figure 11.4-2 "Timing Chart of a Hold Request Cancellation Request" shows the timing chart of a hold request cancellation request.

Figure 11.4-2 Timing Chart of a Hold Request Cancellation Request

Example of interrupt routine [HRCL<ICR (LEVEL)]

(1) Interrupt source clear


to

(2) RETI

If an interrupt request occurs, the interrupt level changes. If the interrupt level is higher than the level in the HRCL register, MHALTI is started for DMA. This causes DMA to cancel an access request and the CPU to return from the hold state to perform the interrupt processing.

Figure 11.4-3 "Timing Chart for Multiple Interrupts" shows the timing chart for multiple interrupts.

Figure 11.4-3 Timing Chart for Multiple Interrupts

Example of Interrupt Routine "Interrupt Level HRCL < ICR interrupt I) < ICR (interrupt II)"

(1), (3) Interrupt source clear

to

(2), (4) RETI

In the above example, while interrupt routine I is being executed, an interrupt with a higher priority occurs. While the interrupt with a higher level than the level in the HRCL register occurs, DHREQ is low.

Note:

Be especially careful about the relationship between interrupt levels specified in the HRCL register and ICR.

CHAPTER 12 A/D CONVERTER

This chapter describes the overview A/D converter, the configuration and functions of registers, and A/D converter operation.

- 12.1 "Overview of the A/D Converter"
- 12.2 "A/D Converter Registers"
- 12.3 "A/D Converter Operation"
- 12.4 "Precautions on the Using A/D Converter"

12.1 Overview of the A/D Converter

The A/D converter is a module that converts an analog input voltage to a digital value in the successive approximation conversion method.

Features

The A/D converter, which converts an analog voltage input to an analog input pin (input voltage) to a digital value, has the following features:

- Peripheral clock (CLKP): 140 clock cycles
- Minimum conversion time: 4.1 μs per channel (for a 34 MHz = CLKP machine clock)
- Built-in sample and hold circuit
- Resolution: 10 bits
- A program can select one of four analog input channels:
 - Single-shot conversion mode: Converts one channel.
 - Scan conversion mode: Continuously converts multiple channels. Up to four channels can be programmed.
- Selectable 3 operating mode
 - Single conversion mode: Converts a specified channel.
 - Continuous conversion mode: Repetitiously converts a specified channel.
 - Stop conversion mode: Converts one channel, pauses, and stands by until the next activation occurs (conversion start can be synchronized).
- DMA transfer can be started due to an interrupt.
- To start conversion, select software, an external trigger (falling edge), or the reload timer (rising edge).

Block Diagram

Figure 12.1-1 "Block Diagram of the A/D Converter" shows a block diagram of the A/D converter.

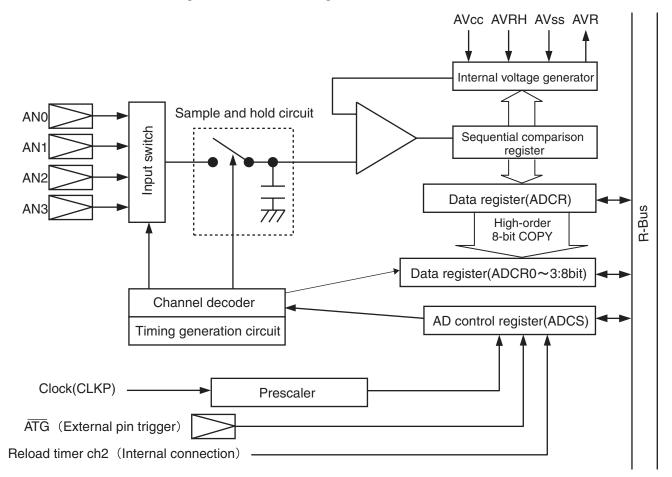


Figure 12.1-1 Block Diagram of the A/D Converter

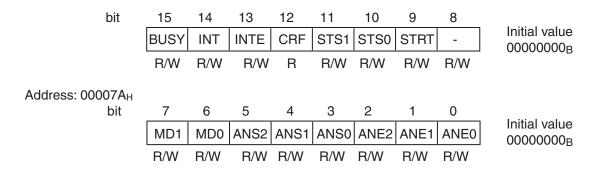
12.2 A/D Converter Registers

This section describes the configuration and functions of the registers used by the A/ D converter.

■ A/D Converter Registers

Figure 12.2-1 "A/D Converter Registers" shows the registers of the A/D converter.

Figure 12.2-1 A/D Converter Registers												
bit	15	14	13	12	11	10	9	8				
	BUSY	INT	INTE	CRF	STS1	STS0	STRT	-				
bit	7	6	5	4	3	2	1	0	Control status register (ADCS)			
	MD1	MD0	ANS2	ANS1	ANS0	ANE2	ANE1	ANE0				
bit	15	14	13	12	11	10	9	8				
	_	_	_	-	_	_	9	8				
		I	I		I	I	I		Data register			
bit	7	6	5	4	3	2	1	0	(ADCR)			
	7	6	5	4	3	2	1	0				
bit	7	6	5	4	3	2	1	0	Conversion result register (ADCR0 to 3)			
	7	6	5	4	3	2	1	0				


12.2.1 Control Status Register (ADCS)

The control status register (ADCS) controls the A/D converter and displays its status.

■ Bit Configuration of Control Status Register (ADCS)

Figure 12.2-2 "Bit Configuration of the Control Status Register (ADCS)" shows the bit configuration of the control status register (ADCS).

Figure 12.2-2 Bit Configuration of the Control Status Register (ADCS)

Note:

Do not rewrite the control status register (ADCS) while the A/D conversion is in progress, except for STRT bit and BUSY bit.

Detailed Bit of Control Status Register (ADCS)

The following describes the bit functions of the control status register (ADCS).

[Bit 15] BUSY (BUSY flag and stop)

This bit has the following different functions during reading and writing:

Reading:

This bit indicates whether the A/D converter is operating. It is set when A/D conversion starts and cleared when it ends.

• Writing:

Write 0 to this bit during A/D operation to forcibly terminate operation. Use this bit for forcible termination in continuous mode and stop mode.

1 cannot be written to the bit that indicates whether the A/D converter is operating. For a read by a RMW instruction, 1 is read. In single-shot mode, this bit is cleared when A/D conversion ends. In continuous mode and stop mode, this bit is not cleared until 0 is written to terminate operation.

This bit is initialized to 0 by a reset.

Do not forcibly terminate operation and start software at the same time (BUSY=0, STRT=1).

[Bit 14] INT (INTerrupt): Data display

It is set when conversion data is written to the ADCR. (It is when a conversion ends single conversion mode or when conversion of all channels ends in scan conversion mode.)

If this bit is set while INTE (Bit 13) is set to 1, an interrupt request occurs. If start of DMA transfer has been selected, DMA is started. Writing 1 to this bit is meaningless.

This bit is cleared if 0 is written to it or a clear signal from DMAC is received.

Note:

Clear this bit by writing 0 to it while the A/D is stopped. This bit is initialized to 0 by a reset.

For a read by a read modify write instruction, 1 is read.

[Bit 13] INTE (INTerrupt Enable): Specifying interrupt by conversion termination

This bit specifies enabling or disabling of interrupts when conversion is completed.

Table 12.2-1 "Function of specifying interrupt by conversion termination" shows specifying interrupt by the conversion termination.

Table 12.2-1 Function of specifying interrupt by conversion termination

INTE	Function					
0	Interrupt disabled (initial value)					
1	Interrupt enabled					

To start DMA transfer occurring due to an interrupt, set this bit. This bit is initialized to 0 by a reset.

[Bit 12] CRF (Convert Run Flag): A/D converting status

This bit shows A/D converting status.

This bit is read only.

Table 12.2-2 "Function of A/D converting" shows the function of A/D converting.

Table 12.2-2 Function of A/D converting

CRF	Function					
0	Stop (initial value)					
1	Now converting					

Note:

Do not change analog input value during A/D converting.

[Bits 11, 10] STS1, STS0 (STart Source select)

These bits are initialized to 00 by a reset. Set these bits to select the source of starting A/D conversion. Table 12.2-3 "Settings of A/D Conversion Start Causes" shows the possible settings.

Table 12.2-3 Settings of A/D Conversion Start Causes

STS1	STS0	Functions
0	0	Started due to software
0	1	Started due to an external pin trigger or software
1	0	Started due to a timer or software

Table 12.2-3	Settings	of A/D	Conversion	Start	Causes

STS1	STS0	Functions
1	1	Started due to an external pin trigger, timer, or software

In a mode with multiple start sources, the first detected source starts the A/D conversion.

Notes:

Since start sources change at the same time that rewriting occurs, be careful when this bit is rewritten during the A/D conversion operation.

- An external pin trigger is detected at a falling edge. If this bit is rewritten to select starting due to an external trigger while the external trigger input level is set to L, the A/D converter may be started.
- While a timer is selected, a rising edge of the reload timer channel 2 is selected. If this bit is
 rewritten to select starting due to a timer while the reload timer output level is set to H, the A/
 D converter may be started.

[Bit 9] STRT (STaRT)

Write 1 to this bit to start the A/D converter. If the system is restarted, write to this bit again. In stop mode, restart is disabled because of the nature of the function.

This bit is initialized to 0 by a reset.

Do not forcibly terminate operation and start a software program at the same time (BUSY=0, STRT=1).

For a read by a read modify write instruction, 0 is read.

[Bit 8] Test bit

This bit is used for testing. For a write, write 0.

[Bits 7, 6] MD1, MD0 (A/D converter MoDe set)

These bits select the operating mode.

Table 12.2-4 "Operating Mode Settings" shows the settings for the operating modes.

Table 12.2-4 Operating Mode Settings

MD1	MD0	Function
0	0	Restart enabled both in single-shot mode and during operation
0	1	Restart disabled both in single-shot mode and during operation
1	0	Restart disabled both in continuous mode and during operation
1	1	Restart disabled both in stop mode and during operation

- Single-shot mode: Performs A/D conversion from the channels specified by ANS2 to ANS0 to the channels specified by ANE2 to ANE0. Stops when one conversion session is completed.
- Continuous mode: Repeatedly performs A/D conversion from the channels specified by ANS2 to ANS0 to the channels specified by ANE2 to ANE0. However, when the interrupt is enabled (INTE = 1), a conversion for all setting channel of ANS2 to ANS0 is completed and, temporarily stops until the interrupt is cleared. Clearing the interrupt restarts the conversion.
- Stop mode: Performs A/D conversion from each of the channels specified by ANS2 to ANS0 to each of the channels specified by ANE2 to ANE0 and then temporarily stops. The

conversion is restarted when a start source occurs.

This bit is initialized to 00 by a reset.

Notes:

If A/D conversion is started in continuous or stop mode, the conversion operation continues until it is stopped due to the BUSY bit.

- Write 0 to the BUSY bit to stop A/D conversion.
- The restart disabled status in each of the single, continuous, and stop modes applies to all the start operation caused by a timer, external trigger, and software.

[Bits 5, 4, 3] ANS2, ANS1, ANS0 (ANalog Start channel set): Setting of A/D conversion start channel

These bits set the channel where A/D conversion will start.

When the A/D converter is started, A/D conversion starts at the channel selected in these bits.

Table 12.2-5 "Settings for A/D Conversion Start Channels" shows the settings for the A/D conversion start channels.

ANS2	ANS1	ANS0	Start channel
0	0	0	ANO
0	0	1	AN1
0	1	0	AN2
0	1	1	AN3
1	Х	Х	Setting disabled

Table 12.2-5 Settings for A/D Conversion Start Channels

• During reading: A conversion channel is read from these bits during A/D conversion.

The initial value of register is read in the stop state.

• During reset: These bits are initialized to 000_B by a reset.

Note:

Write 0 when the ANS2 bit is written.

[Bits 2, 1, 0] ANE2, ANE1, ANE0 (ANalog End channel set) Setting of A/D conversion end channel

These bits set an A/D conversion end channel.

Table 12.2-6 "Settings for A/D Conversion End Channels" shows the settings for the A/D conversion end channels.

Table 12.2-6 Settings for A/D Conversion End Channels

ANE2	ANE1	ANE0	End channel
0	0	0	ANO
0	0	1	AN1
0	1	0	AN2
0	1	1	AN3

Table 12.2-6 Settings for A/D Conversion End Channels

ANE2	ANE1	ANE0	End channel				
1	x	х	Setting disabled				

- Set the same channel as specified by ANS2 to ANS0 to perform one-channel conversion (single-shot conversion).
- If continuous or stop mode is set, A/D conversion returns to the start channel specified by ANS2 to ANS0 when the conversion for the channel specified by these bits is completed.
- Define channels ANS and ANE so that the ANS is equal to or less than the ANE.
- These bits are initialized to 000_B by a reset.

Note:

Write 0 when the ANS2 bit is written.

Setting Example

If the channel settings are ANS=1-channel and ANE=3-channel in single-shot mode:

The operation is performed for input channel (convert channels) to the A/D converter in the order of 1-channel, 2-channel, and 3-channel.

12.2.2 Data Register (ADCR)

The data register (ADCR) stores the A/D conversion result. A digital value is stored as the current result of conversion.

Data Register (ADCR)

Figure 12.2-3 "Bit Configuration of the Data Register (ADCR)" shows the bit configuration of the data register (ADCR).

bit	15	14	13	12	11	10	9	8	Initial value
	_	_	_	_	-	_	9	8	000000XX _B
	R	R	R	R	R	R	R	R	
Address: 000078 _H									
bit	7	6	5	4	3	2	1	0	Initial value
	7	6	5	4	3	2	1	0	000000XX _B
	R	R	R	R	R	R	R	R	

Figure 12.2-3 Bit Configuration of the Data Register (ADCR)

The data register (ADCR), which is a current conversion storage register, stores a digital value that results from conversion.

The value in the data register (ADCR) is updated every time a conversion session is completed. Normally, this register stores the last conversion value.

This register is set to an undefined value by a reset. 0 is read from the high-order bits 15 to 10 bits during reading.

12.2.3 Conversion result register (ADCR0 to 3)

The conversion result registers (ADCR0 to ADCR3) store the results of A/D conversion. The register stores the digital value resulting from conversion of the corresponding channel.

■ Conversion result register (ADCR0 to 3)

Figure 12.2-4 "Bit Configuration of the Conversion Result Register (ADCR0 to 3)" shows the bit configurations of the conversion result registers (ADCR0 to ADCR3).

Figure 12.2-4 Bit Configuration of the conversion result register (ADCR0 to 3)

Address: 00007C _H bit	7	6	5	4	3	2	1	0	Initial value
00007D _н 00007E _н	7	6	5	4	3	2	1	0	XXXXXXXXB
00007E _H	R	R	R	R	R	R	R	R	-

The conversion result registers (ADCR0 to ADCR3) are conversion storage registers that store the digital values resulting from conversion of their respective channels. The conversion result is stored in the upper eight bits in the conversion result register (ADCR).

The values in the conversion result registers (ADCR0 to ADCR3) are updated upon completion of each conversion session conversion of their respective channels. The register usually contains the final value converted.

12.3 A/D Converter Operation

The A/D converter operates using the successive approximation conversion method and has a 10-bit resolution.

Upon completion of each conversion, this A/D converter stores the upper eight bits in the 8 - bit conversion result register (ADCR0 to ADCR3) for the corresponding channel. To read a conversion result, read the corresponding conversion result register (ADCR0 to ADCR3).

The A/D converter has three modes: single-shot conversion mode, continuous conversion mode, and stop conversion mode. This section describes the operation of these modes.

Single-shot Conversion Mode

This mode sequentially converts the analog input specified by the ANS and ANE bits and stops operation after performing conversion up to the end channel specified by the ANE bit.

The one-channel conversion operation occurs when the start and end channels are the same (ANS=ANE).

Example:

If ANS=000_B, ANE=011_B:

Beginning --> AN0 --> AN1 --> AN2 --> AN3 --> End

If ANS= 010_B , ANE= 010_B :

Beginning --> AN2 --> End

Continuous Conversion Mode

This mode sequentially converts the analog input defined by the ANS and ANE bits, returns to the analog input of ANS after performing the conversion up to the end channel defined by the ANE bit, and continues the A/D conversion operation.

The one-channel conversion operation is continued if the start and end channels are the same (ANS=ANE).

Example:

If ANS=000, ANE=011:

Beginning --> AN0 --> AN1 --> AN2 --> AN3 --> AN0 -->--> Repeated

If ANS=010, ANE=010:

Beginning --> AN2 --> AN2 --> AN2 -->-> Repeated

Continuous conversion mode continues to repeatedly perform conversion until 0 is written to the BUSY bit. Write 0 to the BUSY bit to forcibly terminate operation. Be careful when you forcibly terminate the operation because the conversion in progress is stopped before it is completed. If operation is forcibly terminated, the conversion register holds the previous data that has been converted.

When interrupts are enabled (INTE=1), the A/D converter is suspended until the interrupt is cleared after conversion of all the channels selected from among ANS2 to ANS0 is completed once. Clearing the interrupt resumes the conversion.

Stop Conversion Mode

This mode sequentially converts the analog input specified by the ANS and ANE bits and temporarily stops operation each time conversion has been performed for one channel. To clear the temporary stop, start A/D conversion again.

This mode returns to the analog input of ANS after performing conversion up to the end channel specified by the ANE bit and then continues the A/D conversion operation.

The one-channel conversion operation is performed if the start and end channels are the same (ANS=ANE).

Example:

ANS=000_B, ANE=011_B

Beginning -->AN0 --> Stop --> Start --> AN1 --> Stop --> Start --> AN2 --> Stop -->

Start --> AN3 --> Stop --> Start -->AN0 -->--> Repeated

If ANS=010_B, ANE=010_B:

Beginning --> AN2 --> Stop --> Start --> AN2 --> Stop --> Start --> AN2

-->--> Repeated

Only start sources specified by STS1 and STS0 are used at this time.

Use this mode to synchronize the beginning of conversion.

12.4 Precautions on the Using A/D Converter

This section contains precautions on using the A/D converter.

■ Precautions on Using the A/D Converter

To start the A/D converter using an external trigger or an internal timer, set the A/D start source bits (STS1 and STS0) of the ADCS register. At this time, the input value of an external trigger or an internal timer must be set to inactive. If it is set to active, a malfunction occurs.

If STS1 and STS0 are set, set ATG=1 input and reload timer (channel 2)=0 output.

A correct conversion result will not be obtained if the external impedance exceeds the specified value, since then the analog input value cannot be sampled within the specified sampling time.

CHAPTER 13 UART

This chapter describes the overviw of the UART, the configuration and functions of registers, and UART operation.

- 13.1 "Overview of the UART"
- 13.2 "UART Registers"
- 13.3 "UART Operation"
- 13.4 "Example of Using the UART"
- 13.5 "Example of Setting U-TIMER Baud Rates and Reload Values"

13.1 Overview of the UART

The UART is a serial I/O port used to perform asynchronous (start-stop synchronization) communication and CLK synchronous communication. The MB91301 series has three UART channels.

Features

The UART has the following features:

- Full-duplex double buffer
- Either asynchronous (start-stop synchronization) or CLK synchronous communication can be selected.
- Multiprocessor mode is supported.
- Fully programmable baud rate: An arbitrary baud rate can be set using a built-in timer. (See CHAPTER 8 "U-TIMER".)
- An external clock can be used to set a baud rate.
- Error detection functions (parity, framing, overrun)
- The transfer signal is an NRZ code.
- DMA transfer is started as the result of an interrupt.
- The DMAC interrupt source is cleared if the DRCL register is written to.

Block Diagram

Figure 13.1-1 "Block Diagram of the UART" shows a block diagram of the UART.

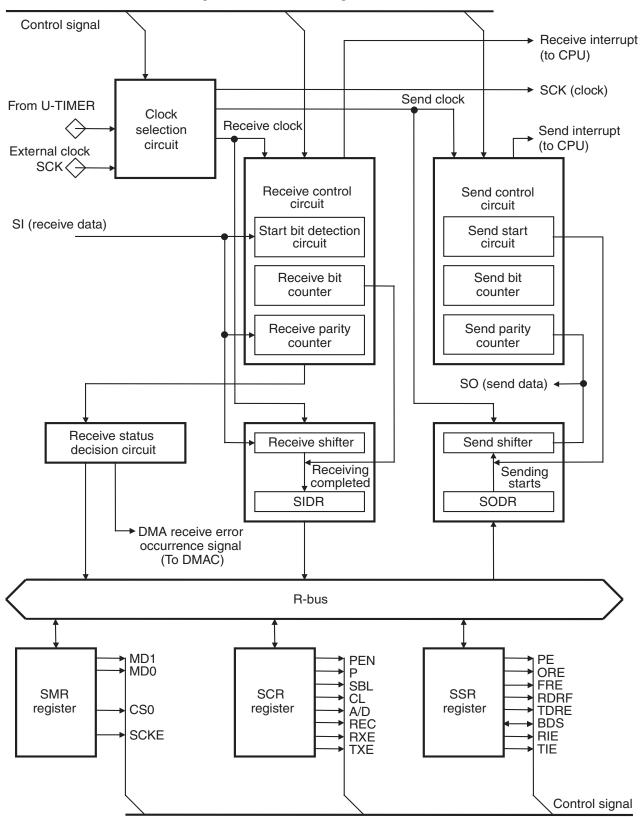


Figure 13.1-1 Block Diagram of the UART

13.2 UART Registers

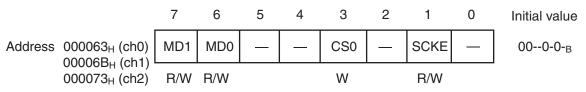
This section describes the configuration and functions of the registers used by the UART.

UART Registers

Figure 13.2-1 "UART Registers" shows the registers of the UART.

15				8	7				0
	SCR					SMR	(R/W)		
		SSR				SIDR(R)/SODR(W)			(R/W)
					_				
		DRCL							(VV)
		8bit					8bit		
bit	7	6	5	4	3	2	1	0	Serial input data register
	D7	D6	D5	D4	D3	D2	D1	D0	Serial output data register
									(SIDR /SODR)
bit	7	6	5	4	3	2	1	0	Serial status register
	PE	ORE	FRE	RDRF	TDRE	BDS	RIE	TIE	(SSR)
bit	7	6	5	4	3	2	1	0	Serial mode register
	MD1	MD0	-	-	CS0	-	SCKE	-	(SMR)
bit	7	6	5	4	3	2	1	0	Serial control register
	PEN	Р	SBL	CL	A/D	REC	RXE	TXE	(SCR)
bit	7	6	5	4	3	2	1	0	DRCL register
	-	-	-	-	-	-	-	-	(DRCL)

Figure 13.2-1 UART Registers


13.2.1 Serial Mode Register (SMR)

The serial mode register (SMR) specifies the UART operating mode. Set an operating mode while operation is stopped. Do not write to this register while operation is in progress.

■ Bit configuration of Serial Mode Register (SMR)

Figure 13.2-2 "Bit Configuration of the Serial Mode Register (SMR)" shows the bit configuration of the serial mode register (SMR).

Figure 13.2-2 Bit Configuration of the Serial Mode Register (SMR)

The following describes each bit function of the serial mode register (SMR) bits.

[Bits 7, 6] MD1, MD0 (MoDe select): Setting of operating mode

These bits select a UART operating mode.

■ Detailed Bit of Serial Mode Register (SMR)

Table 13.2-1 "Settings for UART Operating Modes" shows the settings for the operating modes.

 Table 13.2-1
 Settings for Operating Modes

Mode	MD1	MD0	ID0 Operating mode		
0	0	0	Asynchronous (start-stop synchronization) normal mode [initial value]		
1	0	1	Asynchronous (start-stop synchronization) multiprocessor mode		
2	1	0	CLK synchronous mode		
_	1	1	Setting disabled		

Notes:

- In Mode 1, which is CLK asynchronous mode (multiprocessor), more than one slave CPV can be connected to one host CPU. Since this resource cannot identify the data format of received data, however, only the master in multiprocessor mode is supported. Because the parity check function cannot be used, set PEN of the SCR register to 0.
- Set an operating mode while operation is stopped. Data sent and received while a mode is set is not guaranteed. Write to the DRCL register before starting DMA transfer resulting from an interrupt for the first time.

[Bits 5, 4] (reserved)

These bits are reserved. Always write 1 to these bits.

[Bit 3] CS0 (Clock Select): Selection of operating clock

This bit selects the UART operating clock.

CS0	Operating clock
0	Built-in timer (U-TIMER) [initial value]
1	External clock

[Bit 2] (reserved)

This bit is reserved. Always write 0 to this bit.

[Bit 1] SCKE (SCLK Enable): Setting of SCK pin

This bit specifies whether the SC pin is used as a clock input pin or a clock output pin when communication is performed in CLK synchronous mode (Mode 2).

Set this bit to 0 in CLK asynchronous mode or external clock mode.

SCKE	Function
0	SC pin serves as clock input pin. [initial value]
1	SC pin serves as clock output pin.

Note:

When using the SC pin as a clock input pin, set the CS0 bit to 1 to select external clock mode.

[Bit 0] (Reverse)

This bit is reserved.

13.2.2 Serial Control Register (SCR)

The serial control register (SCR) controls the transfer protocol that is used for serial communication.

This section describes the configuration and functions of the serial control register (SCR)

■ Bit Configuration of Serial Control Register (SCR)

Figure 13.2-3 "Bit Configuration of the Serial Control Register (SCR)" shows the bit configuration of the serial control register (SCR).

Figure 13.2-3 Bit Configuration of the Serial Control Register (SCR)

SCR	7	6	5	4	3	2	1	0	Initial value
Address: 000062 _H (ch0)								1 1	00000100 _B
00006А _Н (ch1) 000072 _Н (ch2)	R/W	R/W	R/W	R/W	R/W	W	R/W	R/W	

Dedicated Bit of Serial Control Register (SCR)

The following describes each bit function of the serial control register (SCR).

[Bit 7] PEN (Parity Enable): Setting of parity

This bit specifies whether data communication is performed to add parity in serial communication.

PEN	Function
0	No parity [initial value]
1	Parity

Note:

Parity can be added only in normal mode (Mode 0) of asynchronous (start-stop synchronization) communication mode. No parity can be added in multiprocessor mode (Mode 1) or CLK synchronous communication mode (Mode 2).

[Bit 6] P (Parity): Specifying of even/odd parity

This bit specifies that even or odd parity be added to perform data communication.

Р	Function	
0	Even parity [initial value]	
1	Odd parity	

[Bit 5] SBL (Stop Bit Length): Specifying of stop bit length

This bit specifies the stop bits length, which marks the end of a frame in asynchronous (startstop synchronization) communication.

SBL	Function
0	1 stop bit [initial value]
1	2 stop bits

[Bit 4] CL (Character Length): Specifying of data length of one frame

This bit specifies the data length of one frame that is sent or received.

CL	Function
0	7 bits [initial value]
1	8 bits

Note:

7-bit data can be handled only in normal mode (Mode 0) of asynchronous (start-stop synchronization) communication mode. Use 8-bit data in multiprocessor mode (Mode 1) or CLK synchronous communication mode (Mode 2).

[Bit 3] A/D (Address/Data): Specifying of data format of frame

This bit specifies the data format of a frame that is sent or received in multiprocessor mode (Mode 1) of asynchronous (start-stop synchronization) communication mode.

A/D	Function
0	Data frame [initial value]
1	Address frame

[Bit 2] REC (Receiver Error Clear): Clearing of error flag

Write 0 to this bit to clear the error flags (PE, ORE, and FRE) in the SSR register.

Writing 1 to this bit has no effect. 1 is always read from this bit.

[Bit 1] RXE (Receiver Enable): Controlling of receive operation

This bit controls the UART receive operation.

RXE Function		
0	Disables receive operation. [initial value]	
1	Enables receive operation.	

Note:

If a receive operation is disabled while it is in progress (while data is being input to the receive shift register), reception of the frame is completed. The receive operation is stopped when the received data is stored in the receive data buffer register (SIDR).

[Bit 0] TXE (Transmitter Enable): Controlling of send operation

This bit controls the UART send operation.

ТХЕ	Function		
0	Disables send operation. [initial value]		
1	Enables send operation.		

Note:

If a send operation is disabled while it is in progress (while data is being output from the transmission register), sending is stopped when no more send data is stored in the send data buffer register (SODR).

13.2.3 Serial Input Data Register (SIDR)/Serial Output Data Register (SODR)

These registers are data buffer registers for receiving and sending.

Serial Input Data Register (SIDR)/Serial Output Data Register (SODR)

Figure 13.2-4 "Bit Configurations of the Serial Input Data Register (SIDR) and the Serial Output Data Register (SODR)" shows the bit configurations of the serial input data register (SIDR) and the serial output data register (SODR).

Figure 13.2-4 Bit Configurations of the Serial Input Data Register (SIDR) and the Serial Output Data Register (SODR)

SIDR	7	6	5	4	3	2	1	0	Initial value
Address: 000061 _H (ch0)	D7	D6	D5	D4	D3	D2	D1	D0	Undefined
000069 _H (ch1) 000071 _H (ch2)	R	R	R	R	R	R	R	R	
SODR	7	6	5	4	3	2	1	0	Initial value
Address: 000061 _H (ch0) 000069 _H (ch1) 000071 _H (ch2)	D7	D6	D5	D4	D3	D2	D1	D0	Undefined
	W	W	W	W	W	W	W	W	

If the data length is 7 bits, Bit 7 (D7) of SIDR and SODR is invalid data. Write to the SODR register only while the TDRE bit of the SSR register is set to 1.

Note:

Writing to the register with this address means writing to the SODR register. Reading from the register with this address means reading from the SIDR register.

13.2.4 Serial Status Register (SSR)

The serial status register (SSR) consists of flags that indicate the operation state of the UART.

This section describes the configuration and functions of the serial status register (SSR).

Bit Configuration of Serial Status Register (SSR)

Figure 13.2-5 "Bit Configuration of the Serial Status Register (SSR)" shows the bit configuration of the serial status register (SSR)

Figure 13.2-5 Bit Configuration of the Serial Status Register (SSR)

Detailed Bit of Serial Status Register (SSR)

The following describes each bit function of the serial status register (SSR).

[Bit 7] PE (Parity Error): Presence or absence of parity error

This bit, which is an interrupt request flag, is set when a parity error occurs during receiving.

PE	Function				
0	No parity error has occurred. [initial value]				
1	A parity error has occurred.				

To clear the flag when it has been set, write 0 to the REC bit (Bit 10) of the SCR register.

If the PE bit is set, the SIDR data becomes invalid.

[Bit 6] ORE (Over Run Error): Presence of absence of overrun error

This bit, which is an interrupt request flag, is set when an overrun error occurs during reception.

ORE	Function			
0	No overrun error has occurred. [initial value]			
1	An overrun error has occurred.			

To clear the flag when it has been set, write 0 to the REC bit of the SCR register.

If the ORE bit is set, the SIDR data becomes invalid.

[Bit 5] FRE (FRaming Error): Presence or absence of framing error

This bit, which is an interrupt request flag, is set when a framing error occurs during

reception.

FRE	Function		
0	No framing error has occurred. [initial value]		
1	A framing error has occurred.		

To clear the flag when it has been set, write 0 to the REC bit of the SCR register.

If the FRE bit is set, the SIDR data becomes invalid.

Note:

Switch the internal and external baud rate clocks using Bit 3 of the serial mode register only while the UART is stopped, since the switching takes effect immediately after writing.

Bit 3 of the serial mode register is write-only.

[Bit 4] RDRF (Receiver Data Register Full): Presence or absence of receive data

This bit, which is an interrupt request flag, indicates that the SIDR register has receive data.

RDRF	Function
0	No receive data exists. [initial value]
1	Receive data exists.

This bit is set when receive data is loaded into the SIDR register. It is automatically cleared when the data is read from the SIDR register.

[Bit 3] TDRE (Transmitter Data Register Empty): Writing of send data

This bit, which is an interrupt request flag, indicates whether send data can be written to SODR.

TDRE	Function				
0	Disables writing of send data.				
1	Enables writing of send data. [initial value]				

This bit is cleared when send data is written to the SODR register. It is set again when the written data is loaded into the send shifter and begins to be transferred, indicating that the next send data can be written.

[Bit 2] BDS (Bit Direction Select): Transfer direction selection

This bit is transfer direction selection bit.

BDS	Function
0	Transfer starting from the least significant bit. (LSB) [initial value]
1	Transfer starting from the most significant bit. (MSB)

Note:

When the serial data register is read or written to data, the high - order and low - order sides are exchanged with each other. If you update this bit after writing data to the SDR register, therefore, the data is made invalid.

If 1 is written to the BDS bit and transmit data is written to the serial output data register (SODR) at the same time after halfword access to the serial status register (SSR), the BDS bit setting for transmit data is ignored.

To switch between the MSB/LSB transfer directions, set the BDS bit before writing data to the SODR.

[Bit 1] RIE (Receiver Interrupt Enable): Receive interrupt

This bit controls a reception interrupt.

RIE	Function				
0	Disables receive interrupts. [initial value]				
1	Enables receive interrupts.				

Note:

Receive interrupt sources include errors due to PE, ORE, and FRE as well as normal receive due to RDRF.

[Bit 0] TIE (Transmitter Interrupt Enable): Control send interrupt

This bit controls send interrupts.

TIE	Function				
0	Disables send interrupts. [initial value]				
1	Enables send interrupts.				

Note:

Send interrupt sources include send requests due to TDRE.

13.2.5 DRCL Register

The DRCL register clears a DMAC interrupt source.

DRCL Register

Figure 12.2-6 "Configuration of the DRCL Register" shows the configuration of the DRCL register.

Address: 000066 _H (ch0) 00006E _H (ch1)	7	6	5	4	3	2	1	0	Initial value
	-	-	-	-	-	-	-	-	В
000076 _Н (ch2)	W	W	W	W	W	W	W	W	

Figure 13.2-6 Configuration of the DRCL Register

Write an arbitrary value to the DRCL register to clear a interrupt source of DMAC. This register has to be accessed from byte.

When an interrupt occurs, DMAC transfer terminates and the DMAC interrupt source is held until cleared.

Even when an interrupt request flag is cleared by interrupt handling that does not activate the DMAC, the DMAC interrupt source remains held.

If the DMAC is enabled for operation with the UART specified as a DMAC activation source with a DMAC interrupt source left, therefore, the DMAC is started and performs unintentional operations while various interrupt request flags have been set.

When the DMAC is started for the first time or when the UART is used by using an interrupt that does not start the DMAC before the DMAC is started, therefore, use this register to clear the DMAC interrupt source.

This register is write-only.

13.3 UART Operation

The UART has two operating modes: asynchronous (start-stop synchronization) mode and CLK synchronous mode.

Asynchronous (start-stop synchronization) mode consists of normal and multiprocessor mode.

This section describes the operation of these operating modes.

■ UART Operating Modes

The UART has the operating modes shown in Table 13.3-1 "UART Operating Modes". Set a value in the SMR and SCR registers to switch mode.

 Table 13.3-1
 UART Operating Modes

Mode	Parity	Data length	Operating mode	Stop bit length		
0	Yes/No	7	Asynchronous (start-stop synchronization)			
0	Yes/No	8	normal mode	1 bit or		
1	No	8+1	Asynchronous (start-stop synchronization) multiprocessor mode	2 bits		
2	No	8	CLK synchronous mode	No		

Note:

The stop bit length in asynchronous (start-stop synchronization) mode can be specified only for a send operation. The stop bit length is always one bit for a receive operation. Since operation is possible only in the above modes, do not make any other setting.

Selecting a Clock for the UART

O Internal timer

If you select the U-TIMER by setting CS0 to 0, the baud rate is determined according to the reload value set for the U-TIMER. At this time, you can calculate the baud rate as follows:

Asynchronous (start-stop synchronization): $\Phi/(16 \times \beta)$

CLK synchronous: Φ/β

 Φ : Peripheral machine clock frequency (CLKP)

β: Cycle specified for the U-TIMER (2n+2 or 2n+3, or n is the reload value.)

In asynchronous (start-stop synchronization) mode, data can be transferred in the range from -1% to +1% of the specified baud rate.

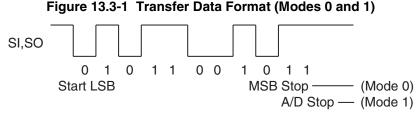
O External clock

If you select an external clock by setting CS0 to 1, the baud rate is as follows (the frequency of the external clock is assumed to be f):

Asynchronous (start-stop synchronization): f/16

CLK synchronous: f

However, that the maximum value for f is 3.125 MHz.


13.3.1 Asynchronous (Start-stop Synchronization) Mode

When the UART is used in operating mode 0 (normal mode) or operating mode 1 (multiprocessor mode), the asynchronous transfer method is used.

Transfer Data Format

UART handles only data in the NRZ (Non Return to Zero) format.

Figure 13.3-1 "Transfer Data Format (Modes 0 and 1)" shows the data format.

Data that has been transferred is 01001101_B.

As shown in Figure 13.3-1 "Transfer Data Format (Modes 0 and 1)", the transfer of data always starts with the start bit (L level data), transfers the data bit length specified in LSB first, and ends with a stop bit (H level data). If an external clock is selected, always input a clock.

The data length can be set to 7 or 8 bits in normal mode (Mode 0), but must be set to 8 bits in multiprocessor mode (Mode 1). In multiprocessor mode, no parity can be added; instead, the A/ D bit is always added.

Receive Operation

If the RXE bit (Bit 1) of the SCR register is set to 1, a receive operation is always in progress.

If a start bit appears on the receive line, one-frame data is received according to the data format specified in the SCR register. If an error occurs before reception of one frame is completed, the error flag is set and then the RDRF flag (Bit 4 of the SSR register) is set. If, at this time, the RIE bit (Bit 1) of the same SSR register is set to 1, a receive interrupt is generated for the CPU. Check the flags of the SSR register and read the SIDR register if normal reception has occurred or perform the necessary processing if an error has occurred.

The RDRF flag is cleared when the SIDR register is read.

Send Operation

If the TDRE flag (Bit 3) of the SSR register is set to 1, send data is written to the SODR register. If, at this time, the TXE bit (bit 0) of the SCR register is set to 1, transmission occurs.

The TDRE flag is set again when the data set in the SODR register is loaded into the send shift register and begins to be transferred, indicating that the next send data can be set. If, at this time, the TIE bit (bit 0) of the same SSR register is set to 1, a send interrupt requesting that the send data be set in the SODR register is generated for the CPU.

The TDRE flag is cleared if data is set in the SODR register.

13.3.2 CLK Synchronous Mode

If the UART is used in Operating Mode 2, the clock synchronous transfer method is used.

Transfer Data Format

The UART handles only data in the NRZ (Non Return to Zero) format.

Figure 13.3-2 "Transfer Data Format (Mode 2)" shows the relationship between send and receive clocks and data.

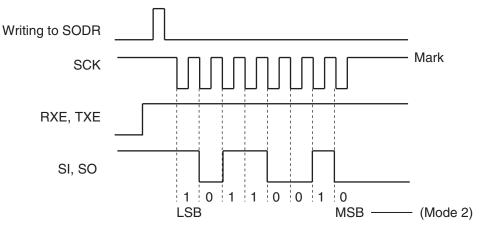


Figure 13.3-2 Transfer Data Format (Mode 2)

Data that has been transferred is 01001101_B .

When the internal clock (U-TIMER) has been selected, a data receive synchronous clock is automatically generated as soon as data is sent. While an external clock has been selected, you must check that data exists in the send data buffer SODR register of the send side UART (TDRE flag is 0) and then supply an accurate clock for one byte. Before sending starts and after it ends, be sure to set the mark level.

The data length is 8 bits only, and no parity can be added. Only overrun errors are detected because there is no start or stop bit.

CHAPTER 13 UART

Initialization

The following shows the setting values of the control registers required to use CLK synchronous mode.

- SMR register
 - MD1, MD0: 10
 - CS: Specifies the clock input.
 - SCKE: Set to 1 for an internal timer and to 0 for an external clock.
 - SOE: Set to 1 for send and to 0 for receive.
- SCR register
 - PEN: 0
 - P,SBL,A/D: These bits are meaningless.
 - CL: 1
 - REC: 0 (to initialize the register)
 - RXE, TXE: At least one of the bits must be set to 1.
- SSR register
 - RIE: Set to 1 to enable interrupts and to 0 to disables interrupts.
 - TIE: 0

Start of Communication

Write to the SODR register to start communication.

If only reception is performed, dummy send data must be written to the SODR register.

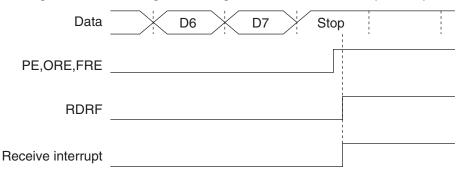
End of Communication

Check for the end of communication by making sure that the RDRF flag of the SSR register has changed to 1. Use the ORE bit of the SSR register to check that communication has been performed correctly.

13.3.3 Occurrence of Interrupts and Timing for Setting Flags

The UART has five flags and two interrupt sources.

The five flags are PE, ORE, FRE, RDRF, and TDRE. PE means parity error, ORE means overrun error, and FRE means framing error. These flags are set when an error occurs during reception and are then cleared when 0 is written to REC of the SCR register. RDRF is set when receive data is loaded into the SIDR register and then cleared when data is read from the SIDR register. Mode 1 does not provide a parity detection function. Mode 2 does not provide a parity detection function and a framing error detection function. TDRE is set when the SODR register is empty, and writing to it is enabled and then cleared when data is written to the SODR register.


■ Occurrence of Interrupts and Timing for Setting Flags

There are two interrupt sources, one for receiving and one for sending. During receiving, an interrupt is requested due to PE, ORE, FRE, or RDRF. During sending, an interrupt is requested due to TDRE. The following shows the timing for setting the interrupt flags in each of these modes.

O Receive operation in Mode 0

The PE, ORE, FRE, and RDRF flags are set when the last stop bit is detected after a receive transfer is completed, causing an interrupt request to be generated for the CPU. The SIDR data is invalid while PE, ORE, and FRE are active.

Figure 13.3-3 "Timing for Setting ORE, FRE, and RDRF (Mode 0)" shows the timing for setting ORE, FRE, and RDRF in Mode 0.

Figure 13.3-3 Timing for Setting ORE, FRE, and RDRF (Mode 0)

O Receive operation in Mode 1

The ORE, FRE, and RDRF flags are set when the last stop bit is detected after a receive transfer is completed, causing an interrupt request to be generated for the CPU. The data indicating an address or the data in last Bit 9 is invalid because the length of data that can be received is 8 bits. The SIDR data is invalid while ORE and FRE are active.

Figure 13.3-4 "Timing for Setting ORE, FRE, and RDRF (Mode 1)" shows the timing for setting ORE, FRE, and RDRF in Mode 1.

Figure 13.3-4 Timing for Setting ORE, FRE, and RDRF (Mode 1)

Data	D6 Address/Data	Stop		
ORE,FRE				-
RDRF				_
Receive interrupt			 	_

O Reception operation in Mode 2

The ORE and RDRF flags are set when the last data (D7) is set after the reception transfer is completed, generating an interrupt request to the CPU. The SIDR data is invalid while ORE is active.

Figure 13.3-5 "Timing of Setting ORE and RDRF (Mode 2)" shows the timing of setting ORE and RDRF in Mode 2.

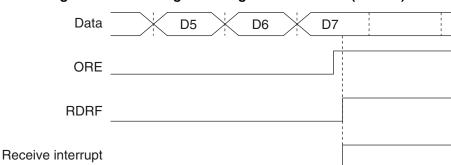


Figure 13.3-5 Timing of Setting ORE and RDRF (Mode 2)

○ Send operation in modes 0, 1, and 2

TDRE is cleared when data is written to the SODR register. This bit is set when data is transferred to the internal shift register and the next data can be written, causing an interrupt request to be generated for the CPU. If 0 is written to TXE of the SCR register (as well as RXE in mode 2) during a send operation, TDRE of the SSR register is set to 1, disabling the UART send operation after the transmission shifter stops. The device sends data written to the SODR register before transmission stops after 0 is written to the TXE of the SCR register (as well as RXE in mode 2) during the send operation.

Figure 13.3-6 "Timing for Setting TDRE (Modes 0 and 1)" shows the timing for setting TDRE in Modes 0 and 1. Figure 13.3-7 "Timing for Setting TDRE (Mode 2)" shows the timing for setting TDRE in Mode 2.

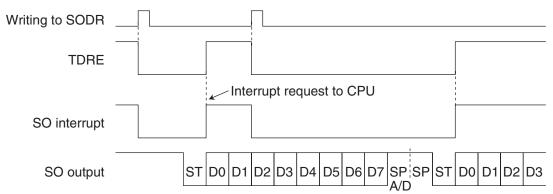
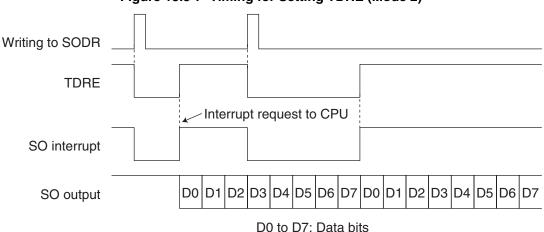



Figure 13.3-6 Timing for Setting TDRE (Modes 0 and 1)

ST: Start bit, D0 to D7: Data bits

SP: Stop bit, A/D: Address/data multiplexer

Figure 13.3-7 Timing for Setting TDRE (Mode 2)

Precautions on Usage

Writing to the serial output data register (SODR) starts communication.

Even for reception only, be sure to write false transmit data to the serial output data register (SODR).

Set an communication mode when operation has stopped. Data sent and received while a mode is set is not guaranteed.

Write to the DRCL register before starting DMA transfer due to an interrupt for the first time.

13.4 Example of Using the UART

This section provides an example of using the UART. Mode 1 is used if more than one slave CPU is connected to a single host CPU.

Example of Using the UART

Figure 13.4-1 "Example of Constructing a System Using Mode 1" shows an example of constructing a system using mode 1. This resource supports only a communications interface on the host.

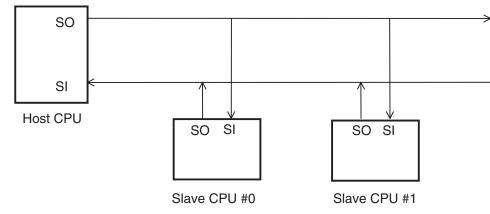
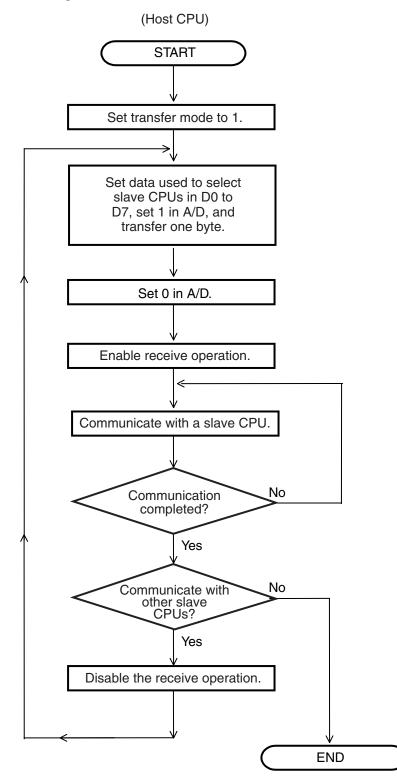



Figure 13.4-1 Example of Constructing a System Using Mode 1

Communication starts when the host CPU transfers address data. Address data is data used when A/D of the SCR register is set to 1. This data is used to select a destination slave CPU, enabling communication with the host CPU. Normal data is data used when A/D of the SCR register is set to 0. Figure 13.4-2 "Communication Flowchart in Mode 1" shows the flowchart.

In this mode, set the PEN bit of the SCR register to 0, since the parity check function cannot be used.

13.5 Example of Setting U-TIMER Baud Rates and Reload Values

This section provides an example of setting U-TIMER baud rates and reload values.

■ Example of Setting U-TIMER Baud Rates and Reload Values

Table 13.5-1 "Setting Values in Asynchronous (Start-Stop Synchronization) Mode" shows setting values to be used in asynchronous (start-stop synchronization) mode. Table 13.5-2 "Setting Values in CLK Synchronous Mode" shows setting values to be used in CLK synchronous mode.

A frequency in the tables represents a peripheral machine clock frequency. UCC1 is a value to be set in the UCC1 bit of the UTIMC register of the U-TIMER. A dash (-) in the tables means that the baud rate cannot be used because the error exceeds plus minus 1%.

Baud rate (bps)	ms	34MHz	20MHz	17MHz	10MHz
1200	833.33	884(UCC1=1)	520(UCC1=0)	441(UCC1=1)	259(UCC1=1)
2400	416.67	441(UCC1=1)	259(UCC1=1)	220(UCC1=0)	129(UCC1=0)
4800	208.33	220(UCC1=1)	129(UCC1=0)	109(UCC1=0)	64(UCC1=0)
9600	104.17	109(UCC1=1)	64(UCC1=0)	54(UCC1=1)	31(UCC1=1)
19200	52.08	54(UCC1=1)	31(UCC1=1)	26(UCC1=1)	-
38400	26.04	26(UCC1=1)	-	_	-
57600	17.36	17(UCC1=1)	-	_	-
10400	96.15	101(UCC1=0)	59(UCC1=0)	50(UCC1=0)	29(UCC1=0)
31250	32.00	33(UCC1=0)	19(UCC1=0)	16(UCC1=0)	9(UCC1=0)
62500	16.00	16(UCC1=0)	9(UCC1=0)	7(UCC1=1)	4(UCC1=0)

 Table 13.5-1
 Setting Values in Asynchronous (Start-Stop Synchronization) Mode

Table 13.5-2 Setting Values in CLK Synchronous Mode

Baud rate (bps)	ms	34MHz	20MHz	17MHz	10MHz		
250k	4.00	67(UCC1=0)	39(UCC1=0)	33(UCC1=0)	19(UCC1=0)		
500k	2.00	33(UCC1=0)	19(UCC1=0)	16(UCC1=1)	9(UCC1=0)		
1M	1.00	16(UCC1=0)	9(UCC1=0)	7(UCC1=0) *	4(UCC1=0)		

*: An error exceeding plus minus 1% occurs.

CHAPTER 14 DMA CONTROLLER (DMAC)

This chapter describes the overviwe of the DMA controller (DMAC), the configuration and functions of registers, and DMAC operation.

- 14.1 "Overview of the DMA Controller (DMAC)"
- 14.2 "DMA Controller (DMAC) Registers"
- 14.3 "DMA Controller (DMAC) Operation"
- 14.4 "Operation Flowcharts"
- 14.5 "Data Bus"
- 14.6 "DMA External Interface"

14.1 Overview of the DMA Controller (DMAC)

The DMA controller (DMAC) is a module that implements DMA (Direct Memory Access) transfer on FR family devices. When this module is used to control DMA transfer, various kinds of data can be transferred at high speed by bypassing the CPU, enhancing system performance.

■ Hardware Configuration

The DMA controller (DMAC) consists mainly of the following blocks:

Five independent DMA channels

- 5-channel independent access control circuit
- 32-bit address registers (reload specifiable, two registers for each channel)
- 16-bit transfer count register (reload specifiable, one register for each channel)
- 4-bit block count register (one for each channel)
- External transfer request input pins: DREQ0, DREQ1 (for ch0, 1 only)
- External transfer request acceptance output pins: DACK0, DACK1 (for ch0, 1 only)
- DMA end output pins: DEOP0, DEOP1 (for ch0, 1 only)
- Fly-by transfer (memory to I/O and I/O to memory) (for ch0, 1 only)
- 2-cycle transfer

Main Functions

The following are the main functions related to data transfer by the DMA controller (DMAC): Data can be transferred independently over multiple channels (5 channels)

O Priority (ch.0>ch.1>ch.2>ch.3>ch.4)

O The order can be rotated between ch.0 and ch.1.

O DMAC start sources

- External dedicated pin input (edge detection/level detection for ch0, 1 only)
- Built-in peripheral requests (shared interrupt requests, including external interrupts)
- Software request (register write)

O Transfer mode

- Demand transfer, burst transfer, step transfer, and block transfer
- Addressing mode: 32-bit full addressing (increment/decrement/fixed)
 The address increment/decrement range is from -255 to +255.
- Data types: Byte, halfword, and word length
- Single shot/reload selectable

Block Diagram

Figure 14.1-1 "Block Diagram of the DMA Controller (DMAC)" is a block diagram of the DMA controller (DMAC).

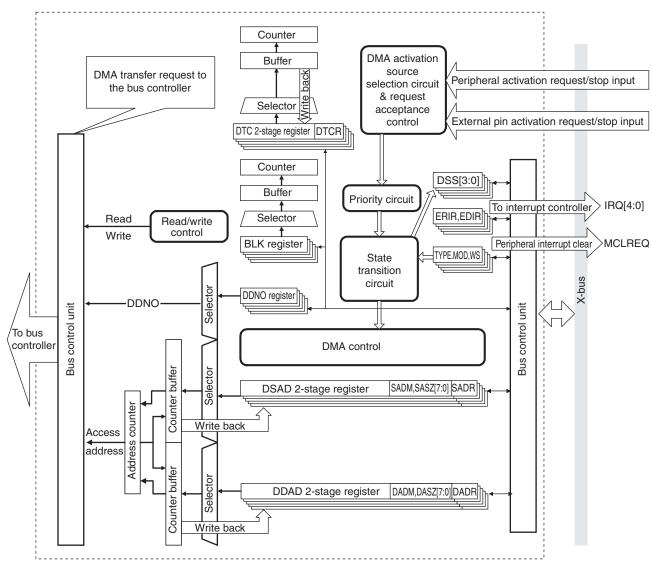


Figure 14.1-1 Block Diagram of the DMA Controller (DMAC)

14.2 DMA Controller (DMAC) Registers

This section describes the configuration and functions of the registers used by the DMA controller (DMAC).

■ DMA Controller (DMAC) registers

Figure 14.2-1 "DMA Controller (DMAC) Registers" shows the registers of the DMA controller (DMAC).

(bit)	31 2	24	23	16	15	08	07	00		
ch.0									Control/status register A	(DMACA0)
ch.0									Control/status register B	(DMACB0)
ch.1									Control/status register A	(DMACA1)
ch.1									Control/status register B	(DMACB1)
ch.2									Control/status register A	(DMACA2)
ch.2									Control/status register B	(DMACB2)
ch.3									Control/status register A	(DMACA3)
ch.3									Control/status register B	(DMACB3)
ch.4									Control/status register A	(DMACA4)
ch.4									Control/status register B	(DMACB4)
									All-channel control register	(DMACR)
ch.0									Transfer source address register	(DMASA0)
ch.0									Transfer destination address register	(DMADA0)
ch.1									Transfer source address register	(DMASA1)
ch.1									Ttransfer destination address register	(DMADA1)
ch.2									Transfer source address register	(DMASA2)
ch.2									Transfer destination address register	(DMADA2)
ch.3									Transfer source address register	(DMASA3)
ch.3									Transfer destination address register	(DMADA3)
ch.4									Transfer source address register	(DMASA4)
ch.4									Transfer destination address register	(DMADA4)

Figure 14.2-1 DMA Controller (DMAC) Registers

Notes on Setting Registers

When the DMA controller (DMAC) is set, some bits need to be set while DMA is stopped. If they are set while DMA is in progress (during transfer), correct operation cannot be guaranteed.

An asterisk following a bit when its function is described later indicates that the operation of the bit is affected if it is set during DMAC transfer. Rewrite this bit while DMAC transfer is stopped (start is disabled or temporarily stopped).

If the bit is set while DMA transfer start is disabled (when DMAE of DMACR=0, or DENB of DMACA=0), the setting takes effect when start is enabled.

If the bit is set while DMA transfer is temporarily stopped (DMAH[3:0] of DMACR not equal to 0000_B or PAUS of DMACA=1), the setting takes effect when temporary stopping is canceled.

14.2.1 Control/Status Registers A (DMACA0 to 4)

Control/status registers A (DMACA0 to 4) control the operation of the DMAC channels. There is a separate register for each channel.

This section describes the configuration and functions of control/status registers A (DMACA0 to 4).

■ Bit Configuration of Control/Status Registers A (DMACA0 to 4)

Figure 14.2-2 "Bit Configuration of Control/Status Registers A (DMACA0 to 4)" shows the bit configuration of control/status registers A (DMACA0 to 4).

Figure 14.2-2 Bit Configuration of Control/Status Registers A (DMACA0 to 4)

		bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Initial value
Address	000200 _н (ch0) 000208 _н (ch1)		DENB	PAUS	STRG		I	S[4:0]				DDNC	D[3:0]			BLK[3:0]		00000000000XXXX
	000210 _H (ch2)	bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	000218 _H (ch3) 000220 _H (ch4)									DTC	[15:0								XXXXXXXXXXXXXXXXXX

■ Detailed Bit of Control/Status Registers A (DMACA0 to 4)

The following describes the functions of the bits of control/status registers A (DMACA0 to 4).

[Bit 31] DENB (Dma ENaBle): DMA operation enable bit

This bit, which corresponds to a transfer channel, is used to enable and disable DMA transfer.

The activated channel starts DMA transfer when a transfer request is generated and accepted.

All transfer requests that are generated for a deactivated channel are disabled.

When the transfer on an activated channel reaches the specified count, this bit is set to 0 and transfer stops.

The transfer can be forced to stop by writing 0 to this bit. Be sure to stop a transfer forcibly (0 write) only after temporarily stopping DMA using the PUAS bit (Bit30 of DMACA). If the transfer is forced to stop without first temporarily stopping DMA, DMA stops but the transferred data cannot be guaranteed. Check whether DMA is stopped using the DSS[2:0] bits [Bit18-16 of DMACB].

DENB	Function
0	Disables operation of DMA on the corresponding channel (initial value).
1	Enables operation of DMA on the corresponding channel.

- If a stop request is accepted during reset: Initialized to 0.
- This bit is readable and writable.
- If the operation of all channels is disabled by Bit15 (DMAE bit) of the DMAC all-channel control register (DMACR), writing 1 to this bit is disabled and the stopped state is maintained. If the operation is disabled by the above bit while it is enabled by this bit, 0 is written to this bit and the transfer is stopped (forced stop).

[Bit 30] PAUS (PAUSe)*: Temporary stop instruction

This bit temporarily stops DMA transfer on the corresponding channel. If this bit is set, DMA transfer is not performed before this bit is cleared (While DMA is stopped, the DSS bits are $1xx_B$.

If this bit is set before starting, DMA transfer continues to be temporarily stopped.

New transfer requests that occur while this bit is set are accepted, but no transfer starts before this bit is cleared (See 14.3.9 "Operation from Starting to End/Stopping").

PAUS	Function
0	Enables operation of the corresponding channel DMA (initial value)
1	Temporarily stops DMA on the corresponding channel.

- When reset: Initialized to 0.
- This bit is readable and writable.

[Bit 29] STRG (Software TRiGger): Transfer request

This bit generates a DMA transfer request for the corresponding channel. If 1 is written to this bit, a transfer request is generated when write operation to the register is completed and transfer on the corresponding channel is started.

However, if the corresponding channel is not activated, operations on this bit are disabled.

If starting by a write operation to the DMAE bit and a transfer request occurring due to this bit are simultaneous, the transfer request is enabled and transfer is started. If writing of 1 to the PAUS bit and a transfer request occurring due to this bit are simultaneous, the transfer request is enabled, but DMA transfer is not started before 0 is written to the PAUS bit.

STRG	Function
0	Disabled
1	DMA starting request

- When reset: Initialized to 0.
- The read value is always 0.
- Only a write value of 1 is valid. If 0 is write, operation is not affected.

[Bits 28 to 24] IS4 to 0 (Input Select)*: Transfer source selection

These bits select the source of a transfer request note that the software transfer request by the STRG bit function is always valid regardless of the setting of these bits. As listed in Table 14.2-1 "Settings for Transfer Request Sources".

IS	Function
00000 _B	Software starting disabled
00001 _B	Setting disabled
↓ 01101 _B	↓ Setting disabled
01110 _B	External pin H level or ↑ edge
01111 _B	External pin L level or ↓ edge
10000 _B	UART0 (receiving complete)
10001 _B	UART1 (receiving complete)
10010 _B	UART2 (receiving complete)
10011 _B	UART0 (sending complete)
10100 _B	UART1 (sending complete)
10101 _B	UART2 (sending complete)
10110 _B	External interrupt 0
10111 _B	External interrupt 1
11000 _B	Reload timer 0
11001 _B	Reload timer 1
11010 _B	Reload timer 2
11011 _B	External interrupt 2
11100 _B	External interrupt 3
11101 _B	PPG0
11110 _B	PPG1
11111 _B	A/D

Table 14.2-1 Settings for Transfer Request Sources

- When reset: Initialized to 0000_B.
- These bits are readable and writable.

Notes:

- If DMA start resulting from an interrupt from a peripheral function is set (IS=1xxxx_B), disable interrupts from the selected peripheral function with the ICR register.
- If demand transfer mode is selected, only IS[4:0]=01110_B, 01111_B can be set. Starting by other sources is disabled.
- External request input is valid only for CH0, 1, and 2. External request input cannot be selected for CH2, CH3 and 4. Whether level detection or edge detection is used is determined by the mode setting. Level detection is selected for demand transfer. For all other cases, edge detection is selected.

[Bits 23 to 20] DDNO3 to 0 (direct access number)*: Fly-by function for built-in peripherals

These bits specify the built-in peripheral of the transfer destination/source used by the corresponding channel.

DDN0	Function
0000 _B	Unused
0001 _B	Unused
0010 _B	Unused
0011 _B	Unused
0100 _B	Unused
0101 _B	Unused
0110 _B	Unused
0111 _B	Unused
1000 _B	Unused
1001 _B	Unused
1010 _B	Unused
1011 _B	Unused
1100 _B	Unused
1101 _B	Unused
1110 _B	Unused
1111 _B	Setting disabled

Table 14.2-2 Settings of the Direct Access Number

- When reset: Initialized to 0000_B.
- These bits are readable and writable.

Note:

This function is not supported by the MB91301 series. Any data written is ignored. Normally, write 0000_B .

[Bits 19 to 16] BLK3 to 0 (BLocK size): Block size specification

These bits specify the block size for block transfer on the corresponding channel. The value specified by these bits becomes the number of words in one transfer unit (more exactly, the repetition count of the data width setting). If block transfer will not be performed, set 01_H (size 1). This register value is ignored during demand transfer. The size becomes 1.

BLK	Function
XXXX _B	Block size of the corresponding channel

- When reset: Not initialized.
- These bits are readable and writable.
- If 0 is specified for all bits, the block size becomes 16 words.
- During reading, the block size is always read (reload value).

[Bits 15 to 00] DTC (Dma Terminal Count register)*: Transfer count register

The DTC register stores the transfer count. Each register has 16-bit length.

All registers have a dedicated reload register. When the register is used for a channel that is enabled to reload the transfer count register, the initial value is automatically written back to the register when the transfer is completed.

DTC	Function
XXXX _B	Transfer count for the corresponding channel

When DMA transfer is started, data in this register is stored in the counter buffer of the DMAdedicated transfer counter and is decremented by 1 (subtraction) after each transfer unit. When DMA transfer is completed, the contents of the counter buffer are written back to this register and then DMA ends. Thus, the transfer count value during DMA operation cannot be read.

- When reset: Not initialized.
- These bits are readable and writable. Always access DTC using halfword length or word length.
- During reading, the count value is read. The reload value cannot be read.

14.2.2 Control/Status Registers B (DMACB0 to 4)

Control/status registers B (DMACB0 to 4) control the operation of each DMAC channel and exist independently for each channel.

This section describes the configuration of control/status registers B (DMACB0 to 4) and their functions.

■ Bit Configuration of Control/Status Register B (DMACB0 to 4)

Figure 14.2-3 "Bit Configuration of Control/Status Registers B (DMACB0 to 4)" shows the bit configuration of control/status registers B (DMACB0 to 4).

Figure 14.2-3 Bit Configuration of Control/Status Registers B (DMACB0 to 4)

A al al una a a	000004 (-1-0)	bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Initial value
Address	000204 _н (ch0) 00020С _н (ch1)		TYPE	E[1:0]	MOE	0[1:0]	WS[1:0]	SADM	DADM	DTCR	SADR	DADR	ERIE	EDIE	D	SS[2:	0]	000000000000000000000000000000000000000
	000214 _H (ch2)	~	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	00021C _H (ch3) 000224 _H (ch4)					SAS	Z[7:0]							DAS	Z[7:0]				$XXXXXXXXXXXXXXXX_{B}$

Detailed Bit of Control/Status Register B (DMACB0 to 4)

The following describeds the functions of the bits of control status register B (DMACB0 to 4).

[Bits 31 to 30] TYPE (TYPE)*: Transfer type setting

These bits are the transfer type setting bits and set the type of operation for the corresponding channel.

- 2-cycle transfer mode: In this mode, the transfer source address (DMASA) and transfer destination address (DMADA) are set and transfer is performed by repeating the read operation and write operation for the number of times specified by the transfer count. All areas can be specified as a transfer source or transfer destination (32-bit address).
- Fly-by transfer mode: In this mode, external <--> external transfer is performed in one cycle by setting a memory address as the transfer destination address (DMADA). Be sure to specify an external area for the memory address.

TYPE	Function
00 _B	2-cycle transfer (initial value)
01 _B	Fly-by: Memory> I/O transfer
10 _B	Fly-by: I/O> memory transfer
11 _B	Setting disabled

Table 14.2-3 Settings for the Transfer Types

- When reset: Initialized to 00_B.
- These bits are readable and writable.

[Bits 29, 28] MOD (MODe)*: Transfer mode setting

These bits are the transfer mode setting bits and set the operating mode of the corresponding channel.

Table 14.2-4 Settings for Transfer Modes

MOD	Function
00 _B	Block/step transfer mode (initial value)
01 _B	Burst transfer mode
10 _B	Demand transfer mode
11 _B	Setting disabled

- When reset: Initialized to 00_B.
- These bits are readable and writable.

[Bits 27 to 26] WS (Word Size)*: Transfer data width selection

These bits are the transfer data width selection bits and are used to select the transfer data width of the corresponding channel. Transfer operations are repeated in units of the data width specified in this register for as many times as the specified count.

Table 14.2-5 Selection of the Transfer Data Width

WS	Function
00 _B	Byte-width transfer (initial value)
01 _B	Halfword-width transfer
10 _B	Word-width transfer
11 _B	Setting disabled

- When reset: Initialized to 00_B.
- These bits are readable and writable.

[Bit 25] SADM (Source-ADdr. Count-Mode select)*: Transfer source address count mode specification

This bit specifies the address processing of the transfer source address of the corresponding channel in each transfer operation.

An address increment is added or an address decrement is subtracted after each transfer operation according to the specified transfer source address count width (SASZ). When the transfer is completed, the next access address is written to the corresponding address register (DMASA).

As a result, the transfer source address register is not updated until DMA transfer is completed.

To make the address always the same, specify 0 or 1 for this register and make the address count width (SAAZ and DASZ) equal to 0.

SADM	Function	
0	Increments transfer source address. (initial value)	
1	Decrements the transfer source address.	

- When reset: Initialized to 0.
- This bit is readable and writable.

[Bit 24] DADM (Destination-ADdr. Count-Mode select)*: Transfer destination address count mode specification

This bit specifies the address processing for the transfer destination address of the corresponding channel in each transfer operation.

An address increment is added or an address decrement is subtracted after each transfer operation according to the specified transfer destination address count width (DASZ). When the transfer is completed, the next access address is written to the corresponding address register (DMADA).

As a result, the transfer destination address register is not updated until the DMA transfer is completed.

To make the address always the same, specify 0 or 1 for this register and make the address count width (SASZ, DASZ) equal to 0.

DADM	Function	
0	Increments the transfer source address. (initial value)	
1	Decrements the transfer source address.	

- When reset: Initialized to 0.
- This bit is readable and writable.

[Bit 23] DTCR (DTC-reg. Reload)*: Transfer count register reload specification

This bit controls reloading of the transfer count register for the corresponding channel.

If reload operation is enabled by this bit, the count register value is restored to its initial value after the transfer is completed then DMAC stops and then waiting starts for new transfer requests (an activation request by STRG or IS setting). If this bit is 1, the DENB bit is not cleared.

DENB=0 or DMAE=0 must be set to stop the transfer. In either case, the transfer is forcibly stopped.

If reloading of the counter is disabled, a single shot operation occurs. In single shot operation, operation stops after the transfer is completed even if reload is specified in the address register. The DENB bit is also cleared in this case.

DTCR	Function	
0	Disables transfer count register reloading (initial value)	
1	Enables transfer count register reloading.	

- When reset: Initialized to 0.
- This bit is readable and writable.

[Bit 22] SADR (Source-ADdr.-reg. Reload)*: Transfer source address register reload specification

This bit controls reloading of the transfer source address register for the corresponding channel.

If this bit enables the reload operation, the transfer source address register value is restored to its initial value after the transfer is completed.

If reloading of the counter is disabled, a single shot operation occurs. In single shot operation, operation stops after the transfer is completed even if reload is specified in the address register. The address register value also stops in this case while the initial value is being reloaded.

If this bit disables the reload operation, the address register value when the transfer is completed is the address to be accessed next to the final address. When address increment is specified, the next address is an incremented address.

SADR	Function	
0	Disables transfer source address register reloading. (initial value)	
1	Enables transfer source address register reloading.	

- When reset: Initialized to 0.
- This bit is readable and writable.

[Bit 21] DADR (Dest.-ADdr.-reg. Reload)*: Transfer destination address register reload specification

This bit controls reloading of the transfer destination address register for the corresponding channel.

If this bit enables reloading, the transfer destination address register value is restored to its initial value after the transfer is completed.

The details of other functions are the same as those described for Bit22 (SADR).

DADR	Function	
0	Disables transfer destination address register reloading.	(initial value)
1	Enables transfer destination address register reloading.	

- When reset: Initialized to 0.
- This bit is readable and writable.

[Bit 20] ERIE (ERror Interrupt Enable)*: Error interrupt output enable

This bit controls the occurrence of an interrupt for termination after an error occurs. The nature of the error that occurred is indicated by DSS2 to 0. Note that an interrupt occurs only for specific termination causes and not for all termination causes (Refer to bits DSS2 to 0, which are Bits 18 to 16).

ERIE	Function	
0	Disables error interrupt request output. (initial value)	
1	Enables error interrupt request output.	

- When reset: Initialized to 0.
- This bit is readable and writable.

[Bit 19] EDIE (EnD Interrupt Enable)*: End interrupt output enable

This bit controls the occurrence of an interrupt for normal termination.

EDIE	Function	
0	Disables end interrupt request output.	(initial value)
1	Enables end interrupt request output.	

- When reset: Initialized to 0.
- This bit is readable and writable.

[Bits 18 to 16] DSS2 to 0 (DMA Stop Status)*: Transfer stop source indication

These bits indicate a code (end code) of 3 bits that indicates the source of stopping or termination of DMA transfer on the corresponding channel. For a list of end codes, see Table 14.2-6 "End Codes".

Table 14.2-6 End Codes

DSS	Function	Interrupt
000 _B	Initial value	None
x01 _B	Address error (underflow/overflow)	Error
x10 _B	Transfer stop request	Error
x11 _B	Normal end	End
1xx _B	DMA stopped temporarily (due, for example, to DMAH, PAUS bit, and an interrupt)	None

A transfer stop request is set only when it is requested by a peripheral device or the external pin DSTP function is used.

The Interrupt column indicates the type of interrupts that can occur.

- When reset: Initialized to 000_B.
- These bits can be cleared by writing 000_B to them.
- These bits are readable and writable. Note that the only valid written value is 000.

[Bits 15 to 8] SASZ (Source Addr count SiZe)*: Transfer source address count size specification

These bits specify the increment or decrement width for the transfer source address (DMASA) of the corresponding channel in each transfer operation. The value set by these bits becomes the address increment/decrement for each transfer unit. The address increment/decrement conforms to the instruction in the transfer source address count mode (SADM).

SASZ	Function
XX _H	Specify the increment/decrement width of the transfer source address. 0 to 255

- When reset: Not initialized
- These bits are readable and writable.

[Bits 7 to 0] DASZ (Des Addr count SiZe)*: Transfer destination address count size specification

These bits specify the increment or decrement width for the transfer destination address (DMADA) of the corresponding channel in each transfer operation. The value set by these bits becomes the address increment/decrement for each transfer unit. The address increment/decrement conforms to the instruction in the transfer destination address count mode (DADM).

DASZ	Function
хх _н	Specify the increment/decrement width of the transfer destination address. 0 to 255

• When reset: Not initialized

• These bits are readable and writable.

14.2.3 Transfer Source/Transfer Destination Address Setting Registers (DMASA0 to 4/DMADA0 to 4)

The transfer source/transfer destination address setting registers (DMASA0 to 4/ DMADA0 to 4) control the operation of the DMAC channels. There is a separate register for each channel.

This section describes the configuration and functions of the transfer source/transfer destination address setting registers (DMASA0 to 4/DMADA0 to 4).

Bit Configuration of Transfer Source/Transfer Destination Address Setting Registers (DMASA0 to 4/ DMADA0 to 4)

The transfer source/transfer destination address setting registers (DMASA0 to 4/DMADA0 to 4) are a group of registers that store the transfer source/transfer destination addresses. Each register is 32 bits length.

Figure 14.2-4 "Bit Configuration of the Transfer Source/Transfer Destination Address Setting Registers (DMASA0 to 4/DMADA0 to 4)" shows the bit configuration of the transfer source/ transfer destination address setting registers (DMASA0 to 4/DMADA0 to 4).

Figure 14.2-4 Bit Configuration of the Transfer Source/Transfer Destination Address Setting Registers (DMASA0 to 4/DMADA0 to 4)

Address 001000 _H (ch0) 001008 _H (ch1)	bit	31	30	29	28	27	26	25	24 DM/	23 \SA[3	22 1:16]	21	20	19	18	17	16	Initial value XXXXXXXXXXXXXXXXXXX
001010 _H (ch2)	bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
001018 _н (ch3) 001020 _н (ch4)									DM/	ASA[1	5:0]							XXXXXXXXXXXXXXXXXX
Address 001004 _H (ch0)	bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Initial value
00100C _H (ch1)											XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX							
001014 _H (ch2)	bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
00101C _H (ch3) 001024 _H (ch4)									DM	ADA[1	6:0]							XXXXXXXXXXXXXXXXXX

Detailed Bit of Transfer Source/Transfer

Destination Address Setting Register (DMASA0 to 4/DMADA0 to 4)

The following describes the functions of the bits of each transfer source/transfer destination address setting register (DMASA0 to 4/DMADA0 to 4).

[Bits 31 to 0] DMASA (DMA Source Addr)*: Transfer source address setting

These bits set the transfer source address.

[Bits 31 to 0] DMADA (DMA Destination Addr)*: Transfer destination address setting

These bits set the transfer destination address.

If DMA transfer is activated, data in this register is stored in the counter buffer of the DMAdedicated address counter and then the address is calculated according to the settings for the transfer operation. When the DMA transfer is completed, the contents of the counter buffer are written back to this register and then DMA ends. Thus, the address counter value during DMA operation cannot be read.

All registers have a dedicated reload register. When the register is used for a channel that is enabled for reloading of the transfer source/transfer destination address register, the initial value is automatically written back to the register when the transfer is completed. Other address registers are not affected.

- When reset: Not initialized.
- These bits are readable and writable. For this register, be sure to access these bits as 32-bit data.
- If these bits are read during transfer, the address before the transfer is read. If they are read after transfer, the next access address is read. Because the reload value cannot be read, it is not possible to read the transfer address in real time.

Note:

Do not set any of the DMAC's registers using this register. DMA transfer is not possible for the DMAC's registers themselves.

14.2.4 DMAC All-Channel Control Register (DMACR)

The DMAC all-channel control register (DMACR) controls the operation of the all five DMAC channels. Be sure to access this register using byte length. This section describes the configuration and functions of the DMAC all-channel control register (DMACR).

Bit Configuration of DMAC All-Channel Control Register (DMACR)

Figure 14.2-5 "Bit Configuration of the DMAC All-Channel Control Register (DMACR)" shows the bit configuration of the DMAC all-channel control register (DMACR).

Figure 14.2-5 Bit Configuration of the DMAC All-Channel Control Register (DMACR)

		bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Initial value
Address	000240 _H		DMAE	-	-	PM01	[DMAH	I[3:0]		-	-	-	-	-	-	-	-	0XX00000XXXXXXXXX
		bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

■ Detailed Bit of DMAC All-Channel Control Register (DMACR)

The following describes the bit functions of the DMAC all-channel control register (DMACR) bits.

[Bit 31] DMAE (DMA Enable): DMA operation enable

This bit controls the operation of all DMA channels.

If DMA operation is disabled with this bit, transfer operations on all channels are disabled regardless of the start/stop settings for each channel and the operating status. Any channel carrying out transfer cancels the requests and stops transfer at a block boundary. All start operations on each channel in a disabled state are disabled.

If this bit enables DMA operation, start/stop operations are enabled for each channels. Simply enabling DMA operation with this bit does not activate each channel.

DMA operation can be forced to stop by writing 0 to this bit. However, be sure to force stopping (0 write) only after temporarily stopping DMA using the DMAH[3:0] bits [Bit27 to 24 of DMACR]. If forced stopping is carried out without first temporarily stopping DMA, DMA stops, but the transfer data cannot be guaranteed. Check whether DMA is stopped using the DSS[2:0] bits [Bit18 to 16 of DMACB].

DMAE	Function						
0	Disables DMA transfer on all channels. (initial value)						
1	Enables DMA transfer on all channels.						

- When reset: Initialized to 0.
- This bit is readable and writable.

[Bit 28] PM01 (Priority mode ch0,1 robine): Channel priority rotation

This bit is set to alternate priority for each transfer between Channel0 and Channel1.

PM01	Function						
0	Fixes the priority. (ch0 > ch1)(initial value)						
1	Alternates priority. (ch1 > ch0)						

- When reset: Initialized to 0.
- This bit is readable and writable.

[Bits 27 to 24] DMAH (DMA Halt): DMA temporary stop

These bits control temporary stopping of all DMA channels. If these bits are set, DMA transfer is not performed on any channel before these bits are cleared.

When DMA transfer is activated after these bits are set, all channels remain temporarily stopped.

Transfer requests that occur on channels for which DMA transfer is enabled (DENB=1) while these bits are set are all enabled. The transfer can be started by clearing all these bits.

DMAH	Function
0000 _B	Enables the DMA operation on all channels. (initial value)
Other than 0000 _B	Temporarily stops DMA operation on all channels.

- When reset: Initialized to 0.
- These bits are readable and writable.

[Bits 30, 29, and 23 to 0] (Reserved): Unused bits

These bits are unused.

• A read value is undefined.

14.2.5 Other Functions

The MB91301 series has the DACK, DEOP, and DREQ pins, which can be used for external transfer. These pins can also be used as general-purpose ports.

■ Pin Function of the DACK, and DEOP, and DREQ pins

To use the DACK, DEOP, or DREQ pins for external transfer, a switch must be made from the port function to the DMA pin function.

To make the switch, set the PFR register.

14.3 DMA Controller (DMAC) Operation

A DMA controller (DMAC) is built into all FR family devices. The FR family DMAC is a multi-functional DMAC that controls data transfer at high speed without the use of CPU instructions.

This section describes the operation of the DMAC.

Principal Operations

- Functions can be set for each transfer channel independently.
- Once starting has been enabled, a channel starts transfer operation only after a specified transfer request has been detected.
- After a transfer request is detected, a DMA transfer request is output to the bus controller and the bus right is acquired by the bus controller before the transfer is started.
- The transfer is carried out as a sequence conforming to the mode settings made independently for the channel being used.

Transfer Mode

Each DMA channel performs transfer according to the transfer mode set by the MOD[1:0] bits of its DMACB register.

O Block/step transfer

Only a single block transfer unit is transferred in response to one transfer request. DMA then stops requesting the bus controller for transfer until the next transfer request is received.

The block transfer unit is the specified block size (BLK[3:0] of DMACA).

O Burst transfer

Transfer in response to one transfer request is carried out continuously for the number of times in the specified transfer count is reached.

The specified transfer count is the transfer count (BLK[3:0] of DMACA X DTC[15:0] of DMACA) X block size.

O Demand transfer

Transfer is carried out continuously until the transfer request input (detected with a level at the DREQ pin) from an external device or a specified transfer count is reached.

The specified transfer count in a demand transfer is the specified transfer count (DTC[15:0] of DMACA). The block size is always 1 and the register value is ignored.

■ Transfer Type

O 2-cycle transfer (normal transfer)

The DMA controller operates using a read operation and a write operation as its unit of operation.

Data is read from an address in the transfer source register and then written to another address in the transfer destination register.

○ Fly-by transfer (memory --> I/O)

The DMA controller operates using a read operation as its unit of operation.

If DMA transfer is performed when fly-by transfer is set, DMA issues a fly-by transfer (read) request to the bus controller and the bus controller lets the external interface carry out the fly-by transfer (read).

○ Fly-by transfer (I/O --> memory)

The DMA controller operates using a write operation as its unit of operation.

Otherwise, operation is the same as fly-by transfer (memory --> I/O) operation.

Access areas used for MB91301 series fly-by transfer must be external areas.

Transfer Address

The following types of addressing are available and can be set independently for each channel transfer source and transfer destination.

The method for specifying the address setting register (DMASA/DMADA) for a 2-cycle transfer and the method for a fly-by transfer are different.

O Specifying the address for a 2-cycle transfer

The value read from a register (DMASA/DMADA) in which an address has been set in advance is used as the address for access. After receiving a transfer request, DMA stores the address from the register in the temporary storage buffer and then starts transfer.

After each transfer (access) operation, the next access address is generated (increment/ decrement/fixed selectable) by the address counter and then written to the temporary storage buffer. Because the contents of the temporary storage buffer are written back to the register (DMASA/DMADA) after each block transfer unit is completed, the address register (DMASA/ DMADA) value is updated after each block transfer unit is completed, making it impossible to determine the address in real time during transfer.

O Specifying the address for a fly-by transfer

In a fly-by transfer, the value read from the transfer destination address register (DMADA) is used as the address for access. The transfer source address register (DMASA) is ignored. Be sure to specify an external area as the address to be set.

After receiving a transfer request, DMA stores the address from the register in the temporary storage buffer and then starts transfer.

After each transfer (access) operation, the next access address is generated (increment/ decrement/fixed selectable) by the address counter and then written to the temporary storage buffer. Because the contents of this temporary storage buffer are written back to the register (DMADA) after each block transfer unit is completed, the address register (DMADA) value is updated after each block transfer unit is completed, making it impossible to determine the address in real time during transfer.

Transfer Count and Transfer End

O Transfer count

The transfer count register is decremented (-1) after each block transfer unit is completed. When the transfer count register becomes 0, counting for the specified transfer ends, and the transfer stops with the end code displayed or is reactivated *.

Like the address register, the transfer count register value is updated only after each block transfer unit.

*: If transfer count register reloading is disabled, the transfer ends. If reloading is enabled, the register value is initialized and then waits for transfer (DTCR of DMACB)

O Transfer end

Listed below are the sources for transfer end. When transfer ends, a source is indicated as the end code (DSS[2:0] of DMACB).

- End of the specified transfer count (DMACA:BLK[3:0] x DMACA:DTC[15:0]) => Normal end
- A transfer stop request from a peripheral circuit or the external pin (DSTP) occurred => Error
- An address error occurred => Error
- A reset occurred => Reset

The transfer stop source is indicated (DSS) and the transfer end interrupt or error interrupt for the end source is generated.

14.3.1 Setting a Transfer Request

The following three types of transfer requests are provided to activate DMA transfer:

- External transfer request pin
- Built-in peripheral request
- Software request

Software requests can always be used regardless of the settings of other requests.

External Transfer Request Pin

A transfer request is generated by input to the input pin prepared for a channel.

The MB91301 series supports channels 0, 1 (DREQ0, 1).

If the input is valid at this point, the following sources are selected depending on the settings for the transfer type and the start source:

O Edge detection

If the transfer type is block, step, or burst transfer, select edge detection:

- Falling edge detection: Set with the transfer source selection register. When IS[4:0] of DMACA=01110_B.
- Rising edge detection: Set with the transfer source selection register. When IS[4:0] of DMACA=01111 $_{\rm B}$.

O Level detection

If the transfer type is demand transfer, select level detection:

- H level detection: Set with the transfer source selection register. When IS[4:0] of DMACA=01110_B.
- L level detection: Set with the transfer source selection register. When IS[4:0] of DMACA=01111 $_{\rm B}$.

Built-in Peripheral Request

A transfer request is generated by an interrupt from the built-in peripheral circuit.

For each channel, set the peripheral's interrupt by which a transfer request is generated (When IS[4:0] of DMACA=1xxxx.)

The built-in peripheral request cannot be used together with an external transfer request.

Note:

Because an interrupt request used in a transfer request seems like an interrupt request to the CPU, disable interrupts from the interrupt controller (ICR register).

Software Request

A transfer request is generated by writing to the trigger bit of a register (STRG of DMACA).

The software request is independent of the external transfer request pin and built-in peripheral request and can always be caused.

If a software request occurs together with a start (transfer enable) request, the transfer is started by immediate output of a DMA transfer request to the bus controller.

14.3.2 Transfer Sequence

The transfer type and the transfer mode that determine, for example, the operation sequence after DMA transfer has started can be set independently for each channel (Settings for TYPE[1:0] and MOD[1:0] of DMACB).

Selection of the Transfer Sequence

The following sequence can be selected with a register setting:

- Burst 2-cycle transfer
- Demand 2-cycle transfer
- Block/step 2-cycle transfer
- Burst fly-by transfer
- Demand fly-by transfer
- Block/step fly-by transfer

O Burst 2-cycle transfer

In a burst 2-cycle transfer, as many transfers as specified by the transfer count are performed continuously for one transfer source. For a 2-cycle transfer, all 32-bit areas can be specified using a transfer source/transfer destination address.

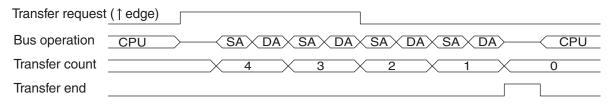
A peripheral transfer request, software transfer request, or external pin (DREQ) edge input detection request can be selected as the transfer source.

Table 14.3-1 Specifiable transfer addresses (burst 2-cycle transfer)

Transfer source addressing	Direction	Transfer destination addressing
All 32-bit areas specifiable	=>	All 32-bit areas specifiable

The following are some features of a burst transfer:

When one transfer request is received, transfer is performed continuously until the transfer count register reaches 0.


The transfer count is the transfer count x block size (BLK[3:0] of DMACA x DTC[15:0] of DMACA).

Another request occurring during transfer is ignored.

If the reload function of the transfer count register is enabled, the next request is accepted after transfer ends.

If a transfer request for another channel with a higher priority is received during transfer, the channel is switched at the boundary of the block transfer unit. Processing resumes only after the transfer request for the other channel is cleared.

Figure 14.3-1 Example of burst transfer for a start on an external pin rising edge, number of blocks =1, and transfer count = 4

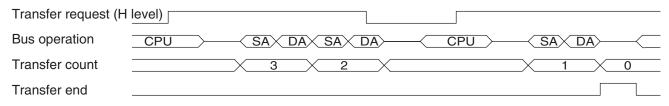
O Burst fly-by transfer

A burst fly-by transfer has the same features as a 2-cycle transfer except that the transfer area can only be external areas, and the transfer unit is read (memory -> I/O) or write (I/O --> memory) only.

Table 14.3-2 Specifiable transfer addresses (burst fly-by transfer)

Transfer source addressing	Direction	Transfer destination addressing
Specification not required (invalid)	None	External area

■ Demand Transfer 2-Cycle Transfer


A demand transfer sequence is generated only if H level or L level of an external pin is selected as a transfer request. Select the level with IS[3:0] of DMACA.

The following are some features of a continuous transfer:

The following are some features of a continuous transfer:

- Each transfer operation of a transfer request is checked. While the external input level is within the range of the specified transfer request levels, transfer is performed continuously without the request being cleared. If the external input changes, the request is cleared and the transfer stops at the transfer boundary. This operation is repeated for the number of times specified by the transfer count.
- Otherwise, operations are the same as those of a burst transfer.

Figure 14.3-2 Example of demand transfer for a start with the external pin at H level, number of blocks = 1, and transfer count = 3

Transfer source address	Direction	Transfer destination addressing
External area	=>	External area
External area	=>	Built-in IO
External area	=>	Built-in RAM
Built-in IO	=>	External area
Built-in RAM	=>	External area

Table 14.3-3 Specifiable transfer addresses (demand transfer 2-cycle transfer)

Note:

For a demand transfer, be sure to set an external area address for the transfer source or transfer destination or both. Since DMA transfer is adjusted to the external bus timing in demand transfer mode, access to external areas is always needed.

O Demand transfer fly-by transfer

A demand transfer fly-by transfer has the same features as a 2-cycle transfer except that the transfer area can only be external areas, and the transfer unit is read (memory -> I/O) or write (I/O -> memory) only.

Table 14.3-4 Specifiable transfer addresses (demand transfer fly-by transfer)

Transfer source addressing	Direction	Transfer destination addressing
Specification not required (invalid)	=>	External area

O Step/block transfer 2-cycle transfer

For a step/block transfer (Transfer for each transfer request is performed as many times as the specified block count), all 32-bit areas can be specified as the transfer source/transfer destination address.

Table 14.3-5 Specifiable transfer addresses (step/block transfer 2-cycle transfer)

Transfer source addressing	Direction	Transfer destination addressing
All 32-bit areas specifiable	=>	All 32-bit areas specifiable

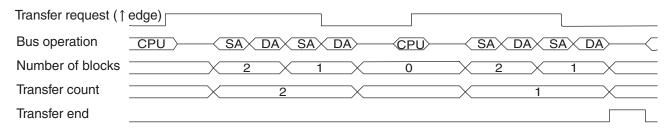
[Step transfer]

If 1 is set as the block size, a step transfer sequence is generated.

The following are some features of a step transfer:

- If a transfer request is received, the transfer request is cleared after one transfer operation and then the transfer is stopped (The DMA transfer request to the bus controller is canceled).
- Another request occurring during transfer is ignored.

• If a transfer request for another channel with a higher priority is received during transfer, the channel is switched after the transfer is stopped and then restarted. Priority in a step transfer is valid only if transfer requests occur simultaneously.


[Block transfer]

If any value other than 1 is specified as the block size, a block transfer sequence is generated.

The following are some features of a block transfer:

• The block transfer has the same features as those of a step transfer except that one transfer unit consists of multiple transfer cycle counts (number of blocks).

Figure 14.3-3 Example of block transfer for a start for an external pin on a rising edge, number of blocks = 2, and transfer count = 2

O Step/block transfer fly-by transfer

This transfer has the same features as those of a 2-cycle transfer except that the transfer area can only be external areas, and the transfer unit is read (memory -> I/O) or write (I/O -> memory) only.

Table 14.3-6 Specifiable transfer addresses (step/block transfer fly-by transfer)

Transfer source addressing	Direction	Transfer destination addressing
Specification not required (invalid)	None	External area

14.3.3 General Aspects of DMA Transfer

This section describes the block size for DMA transfers and the reload operation.

Block Size

- The unit and increment for transfer data is a set of (the number set in the block size specification register x data width) data.
- Since the amount of data transferred in one transfer cycle is determined by the value specified as the data width, one transfer unit is consists of the number of transfer cycles for the specified block size.
- If a transfer request with a higher priority is received during transfer or if a temporary stop
 request for a transfer occurs, the transfer stops only at the transfer unit boundary, whether or
 not the transfer is a block transfer. This arrangement makes it possible to protect data for
 which division or temporary stopping is not desirable. However, if the block size is large,
 response time decreases.
- Transfer stops immediately only when a reset occurs, in which case the data being transferred cannot be guaranteed.

Reload Operation

In this module, the following three types of reloading can be set for each channel:

O Transfer count register reloading

After transfer is performed the specified number of times, the initial value is set in the transfer count register again and waiting for a start request starts.

Set this type of reloading when the entire transfer sequence is to be performed repeatedly.

If reload is not specified, the count register value remains 0 after the transfer is performed the specified number of times and no further transfer is performed.

O Transfer source address register reloading

After transfer is performed the specified number of times, the initial value is set in the transfer source address register again.

Set this type of reloading when transfer is to be repeated from a fixed area in the transfer source address area.

If reload is not specified, the transfer source address register value after the transfer is performed the specified number of times becomes the next address. Use this type when the address area is not fixed.

O Transfer destination address register reloading

After transfer is performed the specified number of times, the initial value is set in the transfer destination address register again.

Set this type of reloading when transfer is to be repeated to a fixed area in the transfer destination address area.

(The processing hereafter is the same as described in "Transfer source address register reloading" above.)

 If only reloading of the transfer source/transfer destination register is enabled, restart after transfer is performed the specified number of times is not implemented and only the values of each address register are set.

O Special examples of operating mode and the reload operation

- If transfer is performed in continuous transfer mode by external pin input level detection and transfer count register reloading is used, transfer continues by reloading even though transfer ends during continuous input. Also in this case, an end code is set.
- If it is preferable that processing stops when data transfer ends and starts after input is detected again, do not specify reload.
- For a transfer in burst, block, or step transfer mode, transfer stops temporarily after reload when data transfer ends. Transfer does not start until new transfer request input is detected.

14.3.4 Addressing Mode

Specify the transfer destination/transfer source address independently for each transfer channel.

Address Register Specifications

The following two methods are provided to specify an address register. The method specified depends on the transfer sequence.

- In 2-cycle transfer mode, set the transfer source address in the transfer source address setting register (DMADA) and the transfer destination address in the transfer destination address setting register (DMASA).
- In fly-by transfer mode, specify the memory address in the transfer destination address setting register (DMASA). In this case, the value in the transfer source address setting register (DMADA) is ignored.

Features of the Address Register

This register has the maximum 32-bit length. With 32-bit length, all space in the memory map can be accessed.

■ Function of the Address Register

- The address register is read in each access operation and the read value is sent to the address bus.
- At the same time, the address for the next access is calculated by the address counter and the address register is updated using the calculated address.
- For address calculation, increment or decrement is selected independently for each channel, transfer destination, and transfer source. The address increment/decrement width is specified by the address count size register (SASZ/DASZ of DMACB).
- If reloading is not enabled, the address resulting from the address calculation of the last address remains in the address register when the transfer ends.
- If reloading is enabled, the initial value of the address is reloaded.

Notes:

- If an overflow or underflow occurs as a result of 32-bit length full address calculation, an address error is detected and transfer on the relevant channel is stopped. Refer to the description for the items related to the end code.
- Do not set any of the DMAC's registers as the address register.
- For demand transfer, be sure to set an address in an external area for the transfer source, transfer destination, or both.
- Do not let the DMAC transfer data to any of the DMAC's registers.

14.3.5 Data Types

Select the data length (data width) transferred in one transfer operation from the following:

- Byte
- Halfword
- Word

Data Length (Data width)

Since the word boundary specification is also observed in DMA transfer, different low-order bits are ignored if an address with a different data length is specified for the transfer destination/ transfer source address.

- Byte: The actual access address and the addressing match.
- Halfword: The actual access address has 2-byte length starting with 0 as the lowest-order bit.
- Word: The actual access address has a 4-byte length starting with 00 as the lowest-order 2 bits.

If the lowest-order bits in the transfer source address and transfer destination address are different, the addresses as set are output on the internal address bus. However, each transfer target on the bus is accessed after the addresses are corrected according to the above rules.

14.3.6 Transfer Count Control

Specify the transfer count within the range of the maximum 16-bit length (1 to 65536).

Transfer Count Control

Set the transfer count value in the transfer count register (DTC of DMACA).

The register value is stored in the temporary storage buffer when the transfer starts and is decremented by the transfer counter. When the counter value becomes 0, end of transfer end for the specified count is detected, and the transfer on the channel is stopped or waiting for a restart request starts (when reload is specified).

The following are some features of the group of transfer count registers:

- Each register has 16-bit length.
- All registers have a dedicated reload register.
- If transfer is activated when the register value is 0, transfer is performed 65536 times.

Reload Operation

- The reload operation can be used only if reloading is enabled in a register that allows reloading.
- When transfer is activated, the initial value of the count register is saved in the reload register.
- If the transfer counter counts down to 0, end of transfer is reported and the initial value is read from the reload register and written to the count register.

14.3.7 CPU Control

When a DMA transfer request is accepted, DMA issues a transfer request to the bus controller.

The bus controller passes the right to use the internal bus to DMA at a break in bus operation and DMA transfer starts.

DMA Transfer and Interrupts

- During DMA transfer, interrupts are generally not accepted until the transfer ends.
- If a DMA transfer request occurs during interrupt processing, the transfer request is accepted and interrupt processing is stopped until the transfer is completed.
- If, as an exception, an NMI request or an interrupt request with a higher level than the hold suppress level set by the interrupt controller occurs, DMAC temporarily cancels the transfer request via the bus controller at a transfer unit boundary (one block) to temporarily stop the transfer until the interrupt request is cleared. In the meantime, the transfer request is retained internally. After the interrupt request is cleared, DMAC reissues a transfer request to the bus controller to acquire the right to use the bus and then restarts DMA transfer.

Suppressing DMA

When an interrupt source with a higher priority occurs during DMA transfer, an FR family device interrupts the DMA transfer and branches to the relevant interrupt routine. This feature is valid as long as there are any interrupt requests. When all interrupt sources are cleared, the suppression feature no longer works and the DMA transfer is restarted by the interrupt processing routine. Thus, if you want to suppress restart of DMA transfer after clearing interrupt sources in the interrupt source processing routine at a level that interrupts DMA transfer, use the DMA suppress function. The DMA suppress function can be activated by writing any value other than 0 to the DMAH[3:0] bits of the DMA all-channel control register and can be stopped by writing 0 to these bits.

This function is mainly used in the interrupt processing routines. Before the interrupt sources in an interrupt processing routine are cleared, the DMA suppress register is incremented by 1. If this is done, then no DMA transfer is performed. After interrupt processing, decrement the DMAH[3:0] bits by 1 before returning. If multiple interrupts have occurred, DMA transfer continues to be suppressed since the DMAH[3:0] bits are not 0 yet. If a single interrupt has occurred, the DMAH[3:0] bits become 0. DMA requests are then enabled immediately.

Note:

- Since the register has only four bits, this function cannot be used for multiple interrupts exceeding 15 levels.
- Be sure to assign the priority of the DMA tasks at a level that is at least 15 levels higher than other interrupt levels.

14.3.8 Hold Arbitration

When a device is operating in external bus extended mode, an external hold function can be used. The relationship between external hold requests and DMA transfer requests by this module when the hold function can be used is described below.

DMA Transfer Request during External Hold

DMA transfer is started when an external bus area is accessed, DMA transfer is temporarily stopped. When the external hold is released, DMA transfer is restarted.

External Hold Request During DMA Transfer

The device is externally held. When an external bus area is accessed by DMA transfer, DMA transfer is temporarily stopped. When the external hold is released, DMA transfer is restarted.

■ Simultaneous Occurrence of a DMA Transfer Request and an External Hold Request

The device is externally held and internal DMA transfer is started. When an external bus area is accessed by DMA transfer, DMA transfer is temporarily stopped. When the external hold is released, DMA transfer is restarted.

14.3.9 Operation from Starting to End/Stopping

Starting of DMA transfer is controlled independently for each channel, but before transfer starts, the operation of all channels needs to be enabled. This section describes operation from starting to end/stopping.

Operation Start

O Enabling operation for all channels

Before activating each DMAC channel, operation for all channels needs to be enabled in advance with the DMA operation enable bit (DMAE of DMACR). All start settings and transfer requests that occurred before operation is enabled are invalid.

O Starting transfer

The transfer operation can be started by the operation enable bit of the control register for each channel. If a transfer request to an activated channel is accepted, the DMA transfer operation is started in the specified mode.

O Starting from a temporary stop

If a temporary stop occurs before starting with channel-by-channel or all-channel control, the temporary stopped state is maintained even though the transfer operation is started. If transfer requests occur in the meantime, they are accepted and retained. When temporary stopping is released, transfer is started.

Transfer Request Acceptance and Transfer

Sampling for transfer requests set for each channel starts after starting.

If edge detection is selected for the external pin start source and a transfer request is detected, the request is retained within DMAC until the clear conditions are met (when the external pin start source is selected for block, step, or burst transfer).

If level detection or peripheral interrupt start is selected for the external pin start source, DMAC continues the transfer until all transfer requests are cleared. When they are cleared, DMAC stops the transfer after one transfer unit (demand transfer or peripheral interrupt start).

Since peripheral interrupts are handled as level detection, use interrupt clear by DMA to handle the interrupts.

Transfer requests are always accepted while other channel requests are being accepted and transfer performed. The channel that will be used for transfer is determined for each transfer unit after priority has been checked.

Clearing Peripheral Interrupts by DMA

This DMA has a function that clears peripheral interrupts. This function works when peripheral interrupt is selected as the DMA start source (when $IS[4:0]=1xxxx_B$).

Peripheral interrupts are cleared only for the set start sources. That is, only the peripheral functions set by IS[4:0] are cleared.

The timing for clearing an interrupt depends on the transfer mode (See Section 14.4 "Operation Flowcharts").

- Block/step transfer: If block transfer is selected, a clear signal is generated after one block (step) transfer.
- Burst transfer: If burst transfer is selected, a clear signal is generated after transfer is performed the specified number of times.
- Demand transfer: Since only start requests from external pins are supported in demand transfer, no clear signal is generated.

Temporary Stopping

DMA transfer is stopped temporary in the following cases:

• Setting of temporary stopping by writing to the control register (Set independently for each channel or all channels simultaneously)

If temporary stopping is set using the temporary stop bit, transfer on the corresponding channel is stopped until release of temporary stopping is set again. You can check the DSS bits for temporary stopping.

O NMI/hold suppress level interrupt processing

If an NMI request or an interrupt request with a higher level than the hold suppress level occurs, all channels on which transfer is in progress are temporarily stopped at the boundary of the transfer unit and the bus right is returned to give priority to NMI/interrupt processing. Transfer request accepted during NMI/interrupt processing are retained, initiating a wait for completion of NMI processing.

Channels for which requests are retained restart transfer after NMI/interrupt processing is completed.

Operation End/Stopping

The end of DMA transfer is controlled independently for each channel. It is also possible to disable operation for all channels at once.

O Transfer end

If reloading is disabled, transfer is stopped, "Normal end" is displayed as the end code, and all transfer requests are disabled after the transfer count register becomes 0 (Clear the DENB bit of DMACA).

If reloading is enabled, the initial value is reloaded, "Normal end" is displayed as the end code, and a wait for transfer requests starts after the transfer count register becomes 0 (Do not clear the DENB bit of DMACA).

• Disabling all channels

If the operation of all channels is disabled with the DMA operation enable bit DMAE, all DMAC operations, including operations on active channels, are stopped. Then, even if the operation of all channels is enabled again, no transfer is performed unless a channel is restarted. In this case, no interrupt whatever occurs.

Stopping Due To an Error

In addition to normal end after transfer for the number of times specified, stopping as the result of various types of errors and the forced stopping are provided.

O Transfer stop requests from peripheral circuits

Depending on the peripheral circuit that outputs a transfer request, a transfer stop request is issued when an error is detected (Example: Error when data is received at or sent from a communications system peripheral).

The DMAC, when it receives such a transfer stop request, displays "Transfer stop request" as the end code and stops the transfer on the corresponding channel.

IS	Function	Transfer stop request
00000 _B	Software start (STRG bit)	↑
↓	↓	None
01111 _B	External pin L level or ↓ edge	↓
10000 _В	UART0 ¹¹	↑
10001 _В	UART1 ¹¹	Yes
10010 _В	UART2 ¹¹	↓
10011 _B	UART0 ^{*2}	↑
↓	↓	None
11111 _B	A/D	↓

Table 14.3-7 Stopping due to an Error

*1 : A transfer stop request when an error is detected.

*2 : A transmission is completed.

For details of the conditions under which a transfer stop request is generated, see the specifications for each peripheral circuit.

Occurrence of an Address Error

If inappropriate addressing, as shown below in parenthesis, occurs in an addressing mode, an address error is detected (if an overflow or underflow occurs in the address counter when a 32-bit address is specified).

If an address error is detected, "An address error occurred" is displayed as the end code and transfer on the corresponding channel is stopped.

14.3.10 DMAC Interrupt Control

Independent of peripheral interrupts that become transfer requests, interrupts can also be output for each DMAC channel.

DMAC Interrupt Control

The following interrupts can be output for each DMAC channel:

- Transfer end interrupt: Occurs only when operation ends normally.
- Error interrupt: Transfer stop request due to a peripheral circuit (error due to a peripheral)
- Error interrupt: Occurrence of address error (error due to software)

All of these interrupts are output according to the meaning of the end code.

An interrupt request can be cleared by writing 000_B to DSS2 to 0 (end code) of DMACS. Be sure to clear the end code by writing 000_B before restarting.

If reloading is enabled, the transfer is automatically restarted. At this point, however, the end code is not cleared and is retained until a new end code is written when the next transfer ends.

Since only one end source can be displayed in an end code, the result after considering the order of priority is displayed when multiple sources occur simultaneously. The interrupt that occurs at this point conforms to the displayed end code.

The following shows the priority for displaying end codes (in order of decreasing priority):

- Reset
- Clearing by writing 000_B
- Peripheral stop request or external pin input (DSTP) stop request
- Normal end
- Stopping when address error detected
- Channel selection and control

■ DMA Transfer during Sleep

- The DMAC can also operate in sleep mode.
- If you anticipate operations during sleep mode, note the following:
 - Since the CPU is stopped, DMAC registers cannot be rewritten. Make settings before sleep mode is entered.
 - The sleep mode is released by an interrupt. Thus, if a peripheral interrupt is selected as the DMAC start source, interrupts must be disabled by the interrupt controller.
- If you do not want to release sleep mode with a DMAC end interrupt, disable these interrupts.

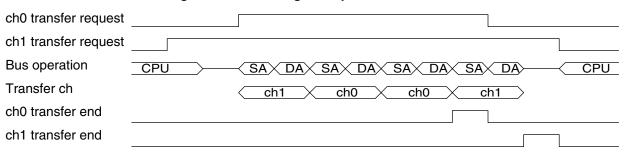
14.3.11 Channel Selection and Control

Up to five channels can be simultaneously set as transfer channels. In general, an independent function can be set for each channel.

Priority Among Channels

Since DMA transfer is possible only on one channel at a time, priority must be set for the channels.

Two modes, fixed and rotation, are provided as the priority settings and can be selected for each channel group (described later).


$\bigcirc\,$ Fixed mode

The order of priority is fixed by channel number, with priority decreasing from channel 0 to channel 4:

(ch.0 > ch.1 > ch.2 > ch.3 > ch.4)

If a transfer request with a higher priority is received during a transfer, the transfer channel becomes the channel with the higher priority when the transfer for the transfer unit (number set in the block size specification register x data width) ends.

When higher priority transfer is completed, transfer is restarted on the previous channel.

Figure 14.3-4 Timing Example in Dixed Mode

• Rotation mode (ch.0 to ch.1 only)

When operation is enabled, the initial states have the same order that they would have in fixed mode, but at the end of each transfer operation, the priority of the channels is reversed. Thus, if more than one transfer request is output at the same time, the channel is switched after each transfer unit.

This mode is effective when continuous or burst transfer is set.

CHAPTER 14 DMA CONTROLLER (DMAC)

· · · · · · · · · · · · · · · · · · ·	
CPU SAX DAX SAX DAX SAX DAX SAX DAX	_
ch1 ch0 ch1 ch0	

Figure 14.3-5 Timing Example in Rotation Mode

■ Channel Group

The order of priority is set as shown in the following table.

MODE	Priority	Remarks
Fixed	ch0 > ch1	_
Rotation	ch0 > ch1 ↑ ↓ ch0 < ch1	The initial state is the top row. If transfer occurs for the top row, the priority is reversed.

14.3.12 Supplement on External Pin and Internal Operation Timing

This section provides supplementary information about external pins and internal operation timing.

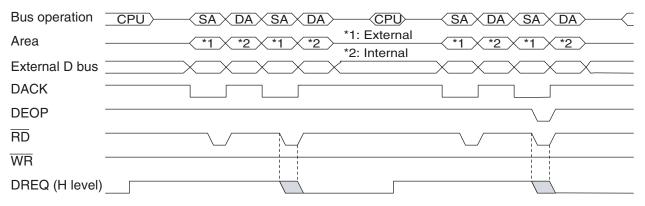
Minimum Effective Pulse Width of the DREQ pin Input

Only channels 0 and 1 are applicable for the MB91301 series.

In all transfer modes for burst, step, block, and demand transfers, the minimum width required is five system clock cycles (5 cycles of CLKT).

Note:

DACK output does not indicate acceptance of DREQ input. DREQ input is always accepted if DMA is enabled but transfer has not started. Therefore, it is not necessary to retain DREQ input until DACK output is asserted (except in demand transfer mode).


Negate Timing of the DREQ Pin Input when a Demand Transfer Request is Stopped

O For 2-cycle transfer

For a demand transfer, be sure to set an address in an external area for the transfer source, the transfer destination, or both.

- If the transfer type is external <--> external: Negate before the last sense timing of the clock in the L section of the external WRn pin output when accessing the transfer source for the last DMA transfer (section where DACK = L and WRn = L). If DREQ is negated later than this, a DMA request may be sensed, resulting in negation until the next transfer.
- If the transfer type is external <--> internal: Negate before the last sense timing of the clock in the L section of the external RD pin output when accessing the transfer source for the last DMA transfer (Section where DACK = L and RD = L). If DREQ is negated later than this, a DMA request may be sensed, resulting in negation until the next transfer

Figure 14.3-6 Negate timing example of the DREQ pin input for 2-cycle external transfer --> internal transfer

 If the transfer is internal <--> external: Negate before the last sense timing of the clock in the L section of the external WRn pin output when accessing the transfer source for the last DMA transfer (Section of DACK = 1and WRn = L). If DREQ is negated later than this, a DMA request may be sensed, resulting in negation until the next transfer.

○ For fly-by (read/write) transfer

For a demand transfer, be sure to set an address in an external area for the transfer destination.

- For fly-by (read) transfer: After the IOWR pin output for the last DMA transfer goes to the H level, negate DREQ while the external RD pin output is at the L level. (section where DACK=L & RD=L). If DREQ is negated later than this, the negation may continue until the next transfer.
- For fly-by (write) transfer: After the external WRn pin output for the last DMA transfer goes to the H level, negate DREQ while ORD is at the L level. (section where DACK=L & RD=L). If DREQ is negated later than this, the negation may continue until the next transfer.

Figure 14.3-7 Negate timing example of the DREQ pin input for fly-by (write) transfe
--

Bus operation	<u>CPU</u> SA X DA X SA X DA CPU SA X DA X SA X DA
Area	
External D bus	
DACK	
DEOP	
RD	
WR	
DREQ (H level)	

■ Timing of the DREQ Pin Input for Continuing Transfer over the Same Channel

O For burst, step, block, and demand transfers

Operation in which transfer is continued over the same channel by the DREQ pin input cannot be guaranteed. If DREQ is reasserted at the fastest timing to clear requests retained internally after the transfer ends, at least one system clock cycle (one CLK output cycle) is provided to detect transfer requests for other channels. If, as a result, a transfer request for another channel with a higher priority is detected, transfer on that channel will be started.

Even if DREQ is reasserted earlier, it is ignored because the transfer has not been completed. If no transfer requests for other channels occur, transfer over the same channel is restarted by reasserting DREQ when the DACK pin output is asserted.

Timing of DACK Pin Output

The DACK output of this DMAC indicates that transfer with respect to an accepted transfer request is being performed.

The output of DACK is basically synchronized with the address output of external bus access timing. To use DACK output, it is necessary to enable the DACK output with a port.

■ Timing of the DEOP Pin Output

- The DEOP output of this DMA indicates that DMA transfer for the specified number of times of the accepted channel has been completed.
- DEOP output is output when access to an external area of the last transfer block starts. Thus, if any value other than 1 is set (block transfer mode) as the block size, DEOP is output when the last data of the last block is transferred. In this case, the acceptance of the next DREQ is already started even during transfer (before DEOP output) if the DACK pin output is asserted.
- The DEOP output is synchronized with RD and WRn of external bus access timing. However, if the transfer source/transfer destination is internal access, DEOP is not output. To use DEOP output, it is necessary to enable the DEOP output using the port register.

■ If an External Pin Transfer Request is Reentered During Transfer

O For burst, step, and block transfers

While the DACK signal is asserted within the DMAC, the next transfer request, if it is entered, is disabled. However, since operation of the external bus control unit and operation of the DMAC are not completely synchronous, the circuit must be initialized to create DREQ pin input using DACK and DEOP output to enable transfer requests by using DREQ input.

O For a demand transfer

If reloading of the transfer count register is specified when transfer for as many transfers as specified has been completed, another transfer request is accepted.

■ If Another Transfer Request Occurs During Block Transfer

No request is detected before the transfer of the specified blocks is completed. At the block boundaries, transfer requests accepted at that time are evaluated and then transfer on the channel with the highest priority is performed.

Transfer Between External I/O and External Memory

As targets of transfer by the DMAC, external I/O and external memory are not distinguished. Specify an external I/O as a fixed external address.

To perform fly-by transfer, set the address of external memory in the transfer destination address register. For external I/O, use DACK output and the signal decoded by the read signal RD or write signal WRn pin.

AC Characteristics of DMAC

DREQ pin input, DACK pin output, and DEOP pin output are provided as the external pins related to the DMAC,. Output timing is synchronized with external bus access (refer to the AC standard for the DMAC).

14.4 Operation Flowcharts

This section contains operation flowcharts for the following transfer modes:

- Block transfer
- Burst transfer
- Demand transfer

Block Transfer

Figure 14.4-1 "Operation Flowchart for Block Transfer" shows the flowchart for block transfer.

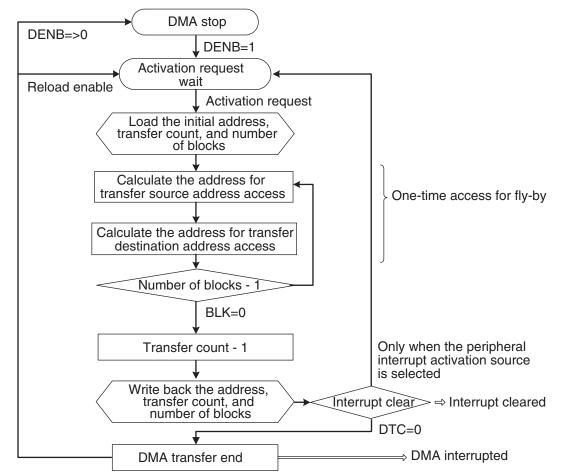


Figure 14.4-1 Operation Flowchart for Block Transfer

Block transfer

- Can be activated by all activation sources (selection).
- Can access to all areas.
- The number of blocks can be set.
- Interrupt clear is issued when transfer of the specified number of blocks is completed.
- The DMA interrupt is issued when transfer for the number of times specified is completed.

Burst Transfer

Figure 14.4-2 "Operation Flowchart for Burst Transfer" shows the operation flowchart for burst transfer.

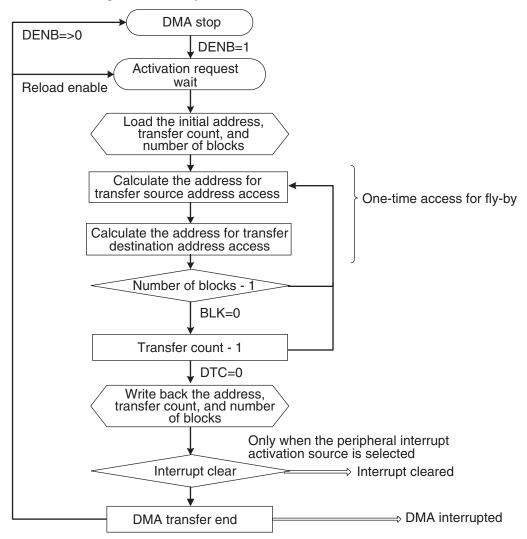


Figure 14.4-2 Operation Flowchart for Burst Transfer

Burst transfer

- Can be activated by all activation sources (selection).
- Can access to all areas.
- The number of blocks can be set.
- Interrupt clear and the DMA interrupt are issued when transfer for the number of times specified is completed.

Demand Transfer

Figure 14.4-3 "Operation Flowchart for Demand Transfer" shows the operation flowchart for demand transfer.

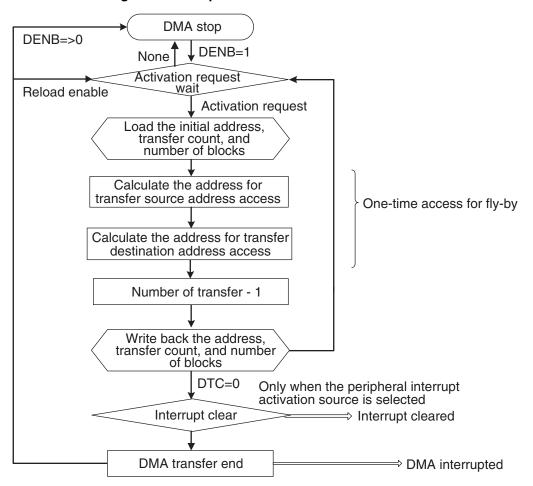
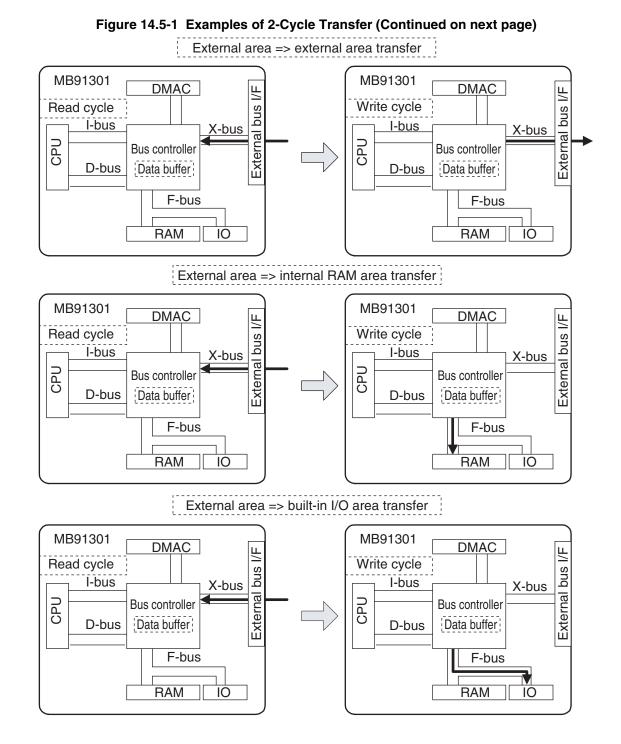
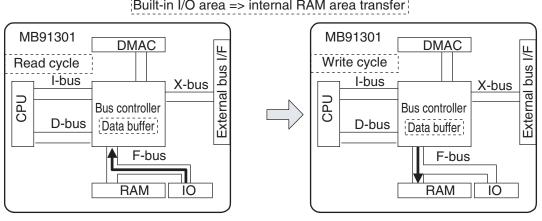


Figure 14.4-3 Operation Flowchart for Demand Transfer

Demand transfer


- Only requests (level detection) from the external pin (DREQ) are accepted. Activation by other sources is disabled.
- Access to an external area is required (since access to an external area becomes the next activation source).
- The number of blocks is always 1, regardless of the settings.
- Interrupt clear and the DMA interrupt are issued when transfer for the number of times specified is completed.


14.5 Data Bus

This section shows the flow of data during 2-cycle transfer and fly-by transfer.

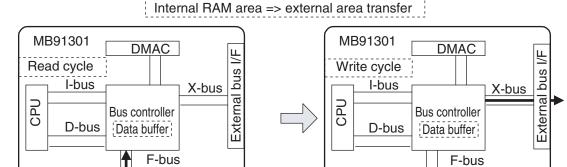
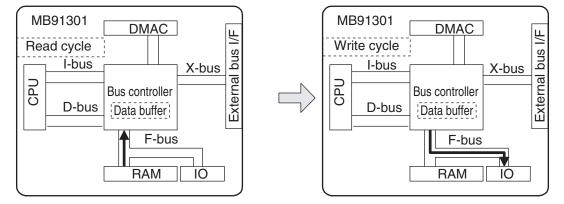

■ Flow of Data During 2-Cycle Transfer

Figure 14.5-1 shows examples of six types of transfer during 2-cycle transfer.

Built-in I/O area => internal RAM area transfer


RAM

10

RAM

10

Internal RAM area => built-in I/O area transfer

■ Flow of Data During Fly-By Transfer

Figure 14.5-2 "Examples of Fly-By Transfer" shows examples of two types of transfer during flyby transfer.

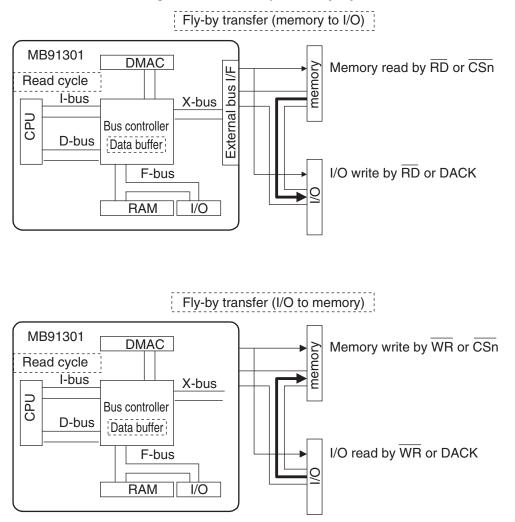


Figure 14.5-2 Examples of Fly-By Transfer

14.6 DMA External Interface

This section provides operation timing charts for the DMA external interface.

DMA External Interface Pins

DMA channels 0, 1 have the following DMA-dedicated pins (DREQ, DACK, and DEOP):

- DREQ: DMA transfer request input pin for demand transfer. A transfer is requested with an input.
- DACK: This pin becomes active (L output) when DMA accesses an external area via the external interface.
- DEOP: This pin becomes active (L output) in synchronization with the last access to complete DMA transfer.
- IORD: This signal becomes active when the direction I/O -> memory is selected for fly-by transfer.
- IOWR: This signal becomes active when the direction memory -> I/O is selected for fly-by transfer.

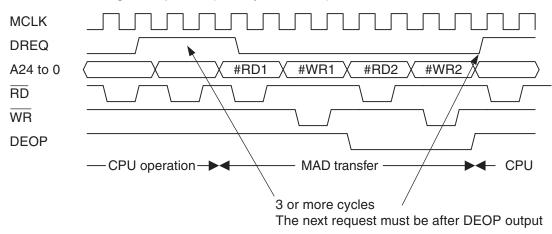
Note:

Refer to 4.10 "DMA Access Operation" for the operation example of DMA external interface.

14.6.1 Input Timing of the DREQx Pin

The DREQx pin is a DMA start request signal. If the pin is also used as a port, enable the DREQ input using the PFR register. This section shows the input timing of the DREQx pin.

■ Timing of Transfer Other Than Demand Transfer

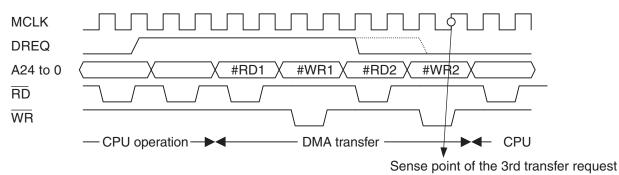

For transfer other than demand transfer, set the DMA start source to edge detection. Although there is no rule for rise/fall timing, use three or more clock cycles as the holding time the DREQ signal. To make another transfer request, enter the request after the DMA transfer is completed (make a request after DEOP is output).

If a request is made before DEOP is output, it may be ignored.

Figure 14.6-1 "Timing Chart for Transfer Other Than the Demand Transfer" shows the timing chart for transfer other than demand transfer.

Figure 14.6-1 Timing Chart for Transfer Other Than the Demand Transfer

When a DREQ edge is requested (for 2-cycle transfer)


Timing of Demand Transfer

For demand transfer, set the DMA start source to level detection. Although there is no rule for starting, synchronize with $\overline{\text{RD}}/\overline{\text{WRn}}$ of the DMA transfer when stopping a transfer. The sense timing is the rise of MCLK in the final external access.

Figure 14.6-2 "Timing Chart for Demand Transfer" shows the timing chart for demand transfer.

Figure 14.6-2 Timing Chart for Demand Transfer

When a DREQx level is requested (for 2-cycle transfer)

Note:

In this case, because 2-cycle transfer is used and the transfer source and transfer destination are an external area, negate from the fall of #RD2 to before the final MCLK rise of #WR2 to stop the two DMA transfer operations.

14.6.2 FR30 Compatible Mode of DACK

FR30 compatible mode of DACK makes the DACK timing identical to the timing of DMA used in FR30 series devices. This section provides the timing charts for the DACK pin in FR30 compatible mode for the following examples of transfer mode setting:

- 2-cycle transfer mode
- Fly-by transfer mode

Transfer Mode Settings

Set the transfer mode using the PFR register corresponding to the DACK pin.

When setting PFR, match the transfer mode (2-cycle transfer/fly-by transfer) of the corresponding DMA channel.

Note:

If 2-cycle transfer is set in FR30 compatible mode, the transfer is synchronized with $\overline{\text{RD}}$ or $\overline{\text{WR}}/\text{WRn}$. To use $\overline{\text{WR}}$, enable $\overline{\text{WR}}$ by setting $0x1x_B$ for TYPE3-0 of the external interface ACR register.

O 2-cycle transfer mode

Figure 14.6-3 "Timing Chart in 2-Cycle Transfer Mode" shows the timing chart in 2-cycle transfer mode.

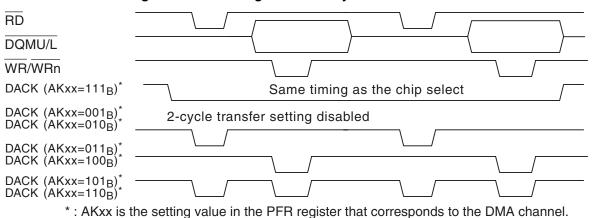


Figure 14.6-3 Timing Chart in 2-Cycle Transfer Mode

CHAPTER 14 DMA CONTROLLER (DMAC)

O Fly-by transfer mode

Figure 14.6-4 "Timing Chart in Fly-By Transfer Mode" shows the timing chart in fly-by transfer mode.

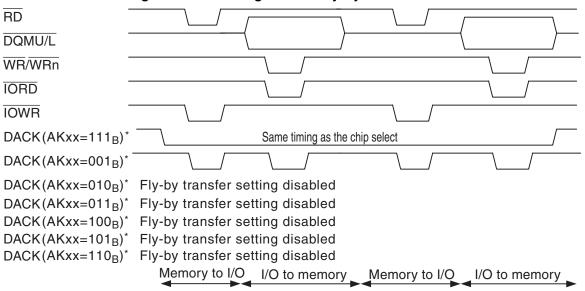
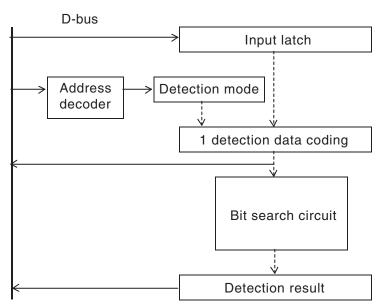


Figure 14.6-4 Timing Chart in Fly-By Transfer Mode

* : AKxx is the setting value in the PFR register that corresponds to the DMA channel.

CHAPTER 15 BIT SEARCH MODULE

This chapter describes the overview of the bit search module, the configuration and functions of registers, and bit search module operation.

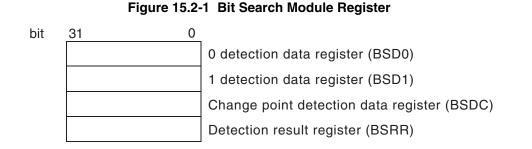

- 15.1 "Overview of the Bit Search Module"
- 15.2 "Bit Search Module Registers"
- 15.3 "Bit Search Module Operation"

15.1 Overview of the Bit Search Module

The bit search module searches for 0, 1, or any points of change for data written to the input register and then returns the detected bit locations.

■ Block Diagram of the Bit Search Module

Figure 15.1-1 "Block Diagram of the Bit Search Module" is a block diagram of the bit search module.



15.2 Bit Search Module Registers

This section describes the registers of the bit search module.

■ Bit Search Module Registers

■ 0 Detection Data Register (BSD0)

Shown below is the configuration of the 0 detection data register (BSD0).

bit	31	0	Initial value
Address 000003F0 _H			undefined
	W		

- 0 detection is performed for the written data.
- The initial value after a reset is undefined.
- The read value is undefined.
- Use a 32-bit length data transfer instruction for data transfer. Do not use 8-bit or 16-bit length data transfer instructions.

■ 1 Detection Data Register (BSD1)

Shown below is the configuration of the 1 detection data register (BSD1).

bit	31	0	Initial value
Address 000003F4 _H			undefined

Use a 32-bit length data transfer instruction for data transfer.

Do not use 8-bit or 16-bit length data transfer instructions.

O Writing

1 detection is performed for the written data.

O Reading

- Save data of the internal state of the bit search module is read. This register is used to save and restore the original state when the bit search module is used by, for example, an interrupt handler.
- Even though data is written to the 0 detection change point detection, or data register, data can be saved and restored only by using the 1 detection data register.
- The initial value after a reset is undefined.

Change Point Detection Data Register (BSDC)

Shown below is the configuration of the change point detection data register (BSDC).

	bit	31	0	Initial value
Address	000003F8 _Н			undefined
		W		

- Point of change are detected in the written value.
- The initial value after a reset is undefined.
- The read value is undefined.
- Use a 32-bit length data transfer instruction for data transfer. Do not use 8-bit or 16-bit length data transfer instructions.

Detection Result Register (BSRR)

The result of 0 detection, 1 detection, or change point detection is read. Which detection result is to be read is determined by the data register that has been written to last.

Shown below is the configuration of the detection result register (BSRR).

	bit	31	0	Initial value
Address	000003FC _H			undefined

R

15.3 Bit Search Module Operation

The bit search module performs the following three operations:

- 0 detection
- 1 detection
- Change point detection

0 Detection

The bit search module scans data written to the 0 detection data register from the MSB to LSB and returns the location where the first 0 is detected. The detection result can be obtained by reading the detection result register. The relationship between the detected location and the return value is given in Table 15.3-1 "Bit Loations and Return Values (decimal)".

If a 0 is not found (that is, the value is FFFFFFF_H), 32 is returned as the search result.

[Execution example]

Write data		Read value (decimal)
$\begin{array}{l} 111111111111111111000000000000_{\rm B} \\ 11111000010010011110000010101010_{\rm B} \\ 100000000000000101010101010101010_{\rm B} \\ 1111111111111111111111111111111111$	(FFFFF000 _H) (F849E0AA _H) (8002AAAA _H) (FFFFFFF _H	> 20 > 5 > 1 > 32

1 Detection

The bit search module scans data written to the 1 detection data register from the MSB to LSB and returns the location where the first 1 is detected. The detection result can be obtained by reading the detection result register. The relationship between the detected location and the return value is given in Table 15.3-1 "Bit Locations and Return Values (decimal)".

If a 1 is not found (that is, the value is $0000000_{\rm H}$), 32 is returned as the search result.

[Execution example]

Write data		Read value
00100000000000000000000000000000000000	(20000000 _H)	>2
00000001001000110100010101100111 _B	(01234567 _H)	> 7
00000000000001111111111111111111	(0003FFFF _H)	> 14
00000000000000000000000000000000000000	(0000001 _H)	> 31
00000000000000000000000000000000000000	(00000000 _H)	> 32

(decimal)

Change Point Detection

The bit search module scans data written to the change point detection data register from bit 30 to the LSB for comparison with the MSB value. The first location where a value that is different from that of the MSB is detected is returned. The detection result can be obtained by reading the detection result register.

The relationship between the detected location and the return value is given in Table 15.3-1 "Bit Locations and Return Values (decimal)". If a change point is not detected, 32 is returned. In change point detection, 0 is never returned as a result.

[Execution example]

Write data

Read value (decimal)

$\begin{array}{c} 001000000000000000000000000000000000\\ 000000$	(2000000 _H) (01234567 _H) (0003FFFF _H) (0000001 _H) 00000000 _H) FFFFF000 _H) F849E0AA _H) 8002AAAA _H) (FFFFFFF _H)	> 2 > 7 > 14 > 31 > 32 > 20 > 5 > 1 > 32
--	---	--

Table 15.3-1 Bit Locations and Return Values (decimal)

Detected bit location	Return value	Detected bit location	Return value	Detected bit location	Return value	Detected bit location	Return value
31	0	23	8	15	16	7	24
30	1	22	9	14	17	6	25
29	2	21	10	13	18	5	26
28	3	20	11	12	19	4	27
27	4	19	12	11	20	3	28
26	5	18	13	10	21	2	29
25	6	17	14	9	22	1	30
24	7	16	15	8	23	0	31
						existent	32

Save/Restore Processing

If it is necessary to save and restore the internal state of the bit search module, such as when the bit search module is used in an interrupt handler, use the following procedure:

- 1. Read the 1 detection data register and save its contents (save).
- 2. Use the bit search module.
- 3. Write the data saved in 1) to the 1 detection data register (restore).

With the above operation, the value obtained when the detection result register is read the next time corresponds to the value written to the bit search module before 1).

If the data register written to last is the 0 detection or change point detection register, the value is restored correctly with the above procedure.

CHAPTER 16 I²C INTERFACE

This chapter describes the overview of the I^2C interface, the configuration and functions of registers, and I^2C interface operation.

- 16.1 "Overview of the I²C Interface"
- 16.2 "I²C Interface Registers"
- 16.3 " Block Diagram of I²C Interface"
- 16.4 "Detailed on Registers of the I²C Interface"
- 16.5 "I²C Interface Operation"
- 16.6 "Operation Flowcharts"

16.1 Overview of the I²C Interface

This section explains the overview of the I^2C interface.

Features

The I²C interface is a serial I/O port that supports Inter IC BUS. The I²C interface serves as a master or slave device on the I²C bus and has the following features:

- Master or slave sending and receiving
- Arbitration function
- Clock synchronization function
- Slave address and general call address detection function
- Transfer direction detection function
- Function that repeatedly generates and detects a START condition
- Bus error detection function
- 10-bit and 7-bit slave addresses
- Slave address reception acknowledge control in master mode
- · Composite slave addresses supported
- · Generation of transfer end interrupts and bus error interrupts
- Standard mode (maximum of 100 Kbps) and high-speed mode (maximum of 400 Kbps at the maximum) available

16.2 I²C Interface Registers

This section describes the registers of the I^2C interface.

■ I²C Interface Registers

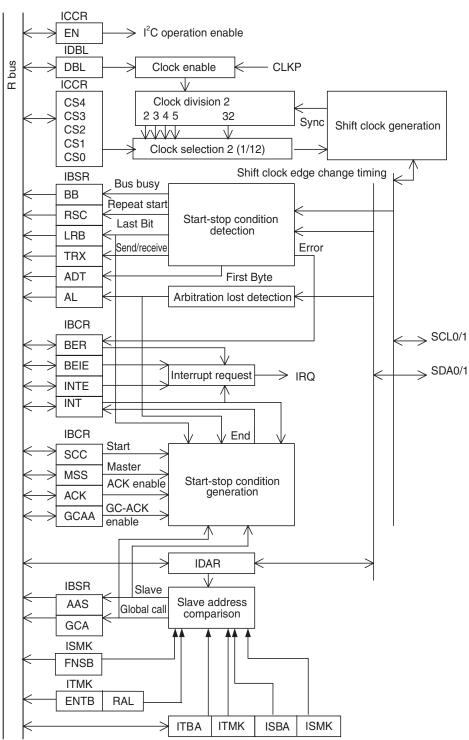
○ Bus control register (IBCR0/1)

	15	14	13	12	11	10	9	8
Address: 000094H/0000B4H	BER	BEIE	SCC	MSS	ACK	GCAA	INTE	INT
	R/W	R/W	W	R/W	R/W	R/W	R/W	R/W
Initial value =>	0	0	0	0	0	0	0	0
	7	6	5	4	3	2	1	0
Address: 000095H/0000B5H	BB	RSC	AL	LRB	TRX	AAS	GCA	ADT
	R	R	R	R	R	R	R	R
Initial value =>	0	0	0	0	0	0	0	0

○ 10-bit slave address register (ITBA0/1)

	15	14	13	12	11	10	9	8
Address: 000096H/0000B6H	—	—	—	—	—	—	TA9	TA8
	R	R	R	R	R	R	R/W	R/W
Initial value =>	0	0	0	0	0	0	0	0
	_	-	_		-	-		-
	1	6	5	4	3	2	1	0
Address: 000097H/0000B7H	TA7	TA6	TA5	TA4	TA3	TA2	TA1	TA0
	R/W							
Initial value =>	0	0	0	0	0	0	0	0

CHAPTER 16 I²C INTERFACE


O 10-bit slave address mask register (ITMK0/1)

	15	14	13	12	11	10	9	8	
Address: 000098H/0000B8H	ENTB	RAL			—	_	TM9	TM8	
	R/W	R	R	R	R	R	R/W	R/W	
Initial value =>		0	1	1	1	1	1	1	
		6	5	4	3	2	1	0	
Address: 000099H/0000B9H	TM7	TM6	TM5	TM4	TM3	TM2	TM1	TM0	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial value =>	1	1	1	1	1	1	1	1	
○ 7-bit slave address register (ISBA0/	1)							
	7	6	5	4	3	2	1	0	
Address: 00009BH/0000BBH	_	SA6	SA5	SA4	SA3	SA2	SA1	SA0	
ľ	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial value =>	0	0	0	0	0	0	0	0	
	-								
○ 7-bit slave address mask reg	ietor (l	SWK0/1	n l						
O 1-bit slave address mask reg		SIVINO)						
	15	14	13	12	11	10	9	8	
Address: 00009AH/0000BAH	ENSB	SM6	SM5	SM4	SM3	SM2	SM1	SM0	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial value =>	0	1	1	1	1	1	1	1	
○ Data register (IDAR0/1)									
	7	6	5	4	3	2	1	0	
Address: 00009DH/0000BDH		D6		4 D4	ī			0	
	D7 R/W	 R/W	5 R/W	 R/W	D3 R/W	D2 R/W	D1 R/W	D0 R/W	
Initial value =>	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	\ / 1 \								
○ Clock control register (ICCR)	J/ I)								
	15	14	13	12	11	10	9	8	
Address: 00009EH/0000BEH	TEST	—	EN	CS4	CS3	CS2	CS1	CS0	
	W	R	R/W	R/W	R/W	R/W	R/W	R/W	
Initial value =>	0	0	0	1	1	1	1	1	
○ Clock disable register (IDBL0/1)									
		0	-	4	0	0		0	
· · · · · · · · · · · · · · · · · · ·	7	6	5	4	3	2	1	0	
Address: 00009FH/0000BFH						_	_	DBL	
latial value	R	R	R	R	R	R	R	R/W	
Initial value =>	0	0	0	0	0	0	0	0	

16.3 Block Diagram of I²C Interface

This section shows the block diagram of the I^2C interface.

Block Diagram

Figure 16.3-1 Block Diagram of the I²C Interface

16.4 Detailed on Registers of the I²C Interface

This section describes the detailed register of the I^2C interface.

Bus Status Register (IBSR0/1)

	7	6	5		3		1	0
Address: 000095H/ [BB	RSC	AL	LRB	TRX	AAS	GCA	ADT
0000000	R	R	R	R	R	_	_	R
Initial value =>	0	0	0	0	0	0	0	0

This register is read/only. All bits are cleared when the I^2C stops operating (EN = 0 in ICCR).

[Bit 7] BB (Bus Busy)

This bit indicates the status of the I²C bus.

0	STOP condition detected
1	START condition detected (bus used)

[Bit 6] RSC (Repeated Start Condition)

This bit is the repeated START condition detection bit.

0	Repeated START condition not detected
1	Repeated START condition detected while bus is being used

This bit is cleared when the slave address transfer ends (ADT=0) or when the STOP condition is detected.

[Bit 5] AL (Arbitration Lost)

This bit is the arbitration lost detection bit.

0	Arbitration lost not detected
1	Arbitration lost detected during master transmission

Write 0 to the INT bit or to 1 the MSS bit of the IBCR register to clear this bit.

- The transmission data does not match the data on the SDA line at the rising edge of SCL.
- A repeated START condition is generated in the first bit of the data by another master.
- The I2C interfacr cannot generate START or STOP condition because the SCL line is driven to L by another slave device.

[Bit 4] LRB (Last Received Bit)

This bit is an acknowledge storage bit that stores an acknowledge from the receiving device.

0 Slave acknowledge detected

1	Slave acknowledge not detected
---	--------------------------------

This bit is rewritten if an acknowledge is detected (reception 9 bits). This bit is cleared if a START or STOP condition is detected.

[Bit 3] TRX (Transferring Data)

This bit indicates the transmission status during a data transfer.

0	Data transmission stopped
1	Data transmission in progress

This bit is set to 1 if:

- A START condition occurs in master mode.
- When the transfer of the first byte ends or this bit is read in slave mode (transmission) or when data is sent in master mode, this bit is set to 0 if:
- The bus is idle (IBCR BB=0).
- An arbitration loss occurs.
- 1 is written to the SCC bit in the mask interrupt status (MSS=1, INT=1).
- The MSS bit is cleared in the mask interrupt status (MSS=1, INT=1).
- No acknowledge occurred for the last transfer byte in slave mode.
- Data is received in slave mode.
- Data is received from a slave in master mode.

[Bit 2] AAS (Addressed As Slave)

This bit is the slave addressing detection bit.

0	No addressing in slave mode
1	Addressing in slave mode

This bit is cleared when a (repeated) START or STOP condition is detected.

This bit is set when a 7-bit or 10-bit slave address is detected.

[Bit 1] GCA (General Call Address)

This bit is the general call address (00H) detection bit.

0	No general call address received in slave mode
1	General call address received in slave mode

This bit is cleared when a (repeated) START or STOP condition is detected.

[Bit 0] ADT (Address Data Transfer)

This bit is the slave address reception detection bit.

0	Received data is not an slave address (or the bus is open).
1	Received data is an slave address.

This bit is set to 1 if a START condition is detected. It is cleared after the second byte if, during write access, the header section of a slave address is detected during 10-bit write access. Otherwise, it is cleared after the first byte.

"After the first or second byte" means the following:

- Writing 0 to the MSS bit during master interrupt: (MSS=1, INT=1: IBCR)
- Writing 1 to the SCC bit during master interrupt: (MSS=1, INT=1: IBCR)
- Clearing the INT bit
- Beginning of a transfer byte that is not used for the transfer target as master or slave

Bus Control Register (IBCR0/1)

	15	14	13	12	11	10	9	8
Address: 000094H/ 0000B4H	BER	BEIE	SCC	MSS	ACK	GCAA	INTE	INT
						R/W		
Initial value =>	0	0	0	0	0	0	0	0

Bits other than BER and BEIE are cleared if the interface is stopped (ICCR EN=0).

[Bit 15] BER (Bus Error)

This bit is the bus error interrupt request flag bit.

For a read by a read modify instruction, 1 is always read.

During writing

0	Clears the bus error interrupt request flag.
1	Irrelevant

During reading

0	Bus error not detected
1	Error condition detected

If this bit is set, the EN bit of the CCR register is cleared, stopping the I²C interface and halting data transfer. All bits of the IBSR and IBCR registers other than BER and BEIE are cleared.

This bit must be cleared before the I^2C interface is enabled (EN=1) again.

This bit is set to 1 if:

- 1. An illegal START or STOP condition at a specific location is detected (while a slave address or data is being transferred).*
- 2. The header section of a slave address is received during a 10-bit read access before a 10-bit write access with the first byte is performed. *
- 3. A STOP condition is detected in master mode.
- *: While the I²C interface is enabled during transfer, this detection flag is set after the first [STOP] condition is received to prevent an illegal bus error report.

[Bit 14] BEIE (Bus Error Interrupt Enable)

This bit is the bus error interrupt enable bit.

0	Bus error interrupt disabled
1	Bus error interrupt enabled

An interrupt occurs if this bit is set to 1 and the BER bit is set to 1.

[Bit 13] SCC (Start Condition Continue)

This bit is the repeated [START] condition generation bit.

During writing

0	Irrelevant
1	Generates a repeated START condition in master transfer.

The read value of this bit is always 0.

If 1 is written to this bit in master mode (MSS = 1 and INT = 1) a repeated START condition is generated, the INT bit is automatically cleared.

[Bit 12] MSS (Master Slave Select)

This bit is the master or slave selection bit.

0	Selects slave mode.
1	Selects master mode. Generates a START condition to enable the value of the IDAR register to be sent as a slave address.

This bit is cleared when arbitration lost occurs during master transmission, causing slave mode to start.

Write 0 to this bit during a master interrupt flag is set (MSS=1, INT=1) to automatically clear the INT bit. Then, generate a [STOP] condition to end the transfer.

Note:

The MSS bit is directly reset. To detect a STOP condition, check the BB bit of the IBSR register.

Write 1 while the bus is idle (MSS=0, BB=0) to generate a START condition. The value of the IDAR register are also sent.

While the bus is being used (IBSR register BB=1, TRX=0, IBCR register MSS=0), write 1 to the MSS bit to cause the I^2C interface to start transmission after waiting for the bus to be opened. If, during this time, the I^2C interface is specified as the address for a slave that is accompanied by a write access, the bus is opened after the transfer ends. If the interface is transmitting as a slave (IBCS AAS=1, TRX=1) during this time, no data is sent even if the bus has been opened.

It is important to check whether the I^2C interface is specified as a slave (IBSR AAS=1), whether data transmission is normal at the next interrupt, and whether an illegal termination has occurred (IBSR AL=1).

[Bit 11] ACK (ACKnowledge)

This bit generates an acknowledge according to the setting of the data receive enable bit.

0	Acknowledge not generated when data is received
1	Acknowledge generated when data is received

This bit is disabled when slave address data is received in slave mode.

An acknowledge is returned if the I²C interface detects a 7-bit or 10-bit slave address when the corresponding enable bits (ENTB ITMK, ENSB ISMK) are set.

Write to this bit while an interrupt flag is set (INT=1), the bus is idle (IBSR BB=0), or the I^2C interface is stopped (ICCR register EN=0).

[Bit 10] GCAA (General Call Address Acknowledge)

This bit is an acknowledge enable bit used when a general call address is received.

0	Acknowledge not generated when general call address is received
1	Acknowledge generated when general call address is received

Write to this bit while an interrupt flag is set (INT=1), the bus is idle (IBSR BB=0), or the interface is stopped (ICCR register EN=0).

[Bit 9] INTE (INTerrupt Enable)

This bit is the interrupt enable bit.

0	Interrupts disabled					
1	Interrupts enabled					

When this bit is 1, the interrupt is generated if the INT bit is 1.

[Bit 8] INT (INTerrupt)

This bit is the transfer end interrupt request flag bit. For a read by a read modify instruction, 1 is always read.

During writing

0	Clears the transfer end interrupt request flag.
1	Irrelevant

During reading

0	Transfer not endedNot a transfer targetBus is open.
---	---

1	 This bit is set to 1 if a one-byte transfer that includes the acknowledge bit is completed and the following conditions are met: Bus master Slave address A general call address was received. Arbitration lost occurred. If the interface is specified as a slave address, this bit is set at the end of slave address receiption that includes an acknowledge.
---	---

If this bit is set to 1, the SCL line is maintained at the L level. Write 0 to this bit to clear it and to open the SCL line to transfer the next byte. A repeated START or STOP condition is generated.

This bit is cleared when the SCC bit or the MSS bit are set to 1.

Note:

Contention of SCC, MSS, and INT bits

If data is simultaneously written to the SCC, MSS, and INT bits, contention occurs between the next-byte transfer, repeated START condition generation, and STOP condition generation. If this situation occurs, the priorities are as follows:

1. Next-byte transfer and STOP condition generation

When the INT bit is set to 0 and the MSS bit is set to 0, writing of the MSS bit has precedence and a STOP condition is generated.

2. Next-byte transfer and START condition generation

When the INT bit is set to 0 and the SCC bit is set to 1, writing of the SCC bit has precedence a repeated START condition is generated, and the value of IDAR is sent.

Contention occurs if a repeated start condition is sent to the IDAR register.

3. Repeated START condition generation and STOP condition generation

When the SCC bit is set to 1 and the MSS bit is set to 0 at the same time, clearing of the MSS bit has precedence. A STOP condition is generated and the I^2C interface enters slave mode.

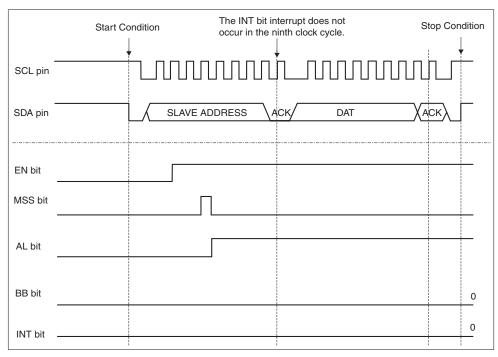
Notes:

When an instruction which generates a start condition is executed (the MSS bit is set to 1) at the timing shown in Figure 16.4-2 "Diagram of timing at which an interrupt upon detection of " AL bit = 1 " does not occur", arbitration lost detection (AL bit = 1) prevents an interrupt (INT bit = 1) from being generated.

• Condition 1 in which an interrupt (INT bit = 1) upon detection of " AL bit = 1 " does not occur

When an instruction which generates a start condition is executed (setting the MSS bit in the IBCR register to 1) with no start condition detected (BB bit = 0) and with the SDA or SCL pin at the "L" level.

	SCL or SDA pin at Low level	
SCL pin		"L"
SDA pin		"L"
I ² C operating	enable state (EN bit = 1)	1_
	setting (MSS bit = 1)	
Arbitration los	t detection bit (AL bit = 1)	
Bus busy (BE	3 bit)	0
Interrupt (INT	bit)	0


Figure 16.4-1 Diagram of timing at which an interrupt upon detection of " AL bit = 1 " does not occur

• Condition 2 in which an interrupt (INT bit = 1) upon detection of "AL bit = 1 " does not occur

When an instruction which generates a start condition by enabling I^2C operation (EN bit = 1) is executed (setting the MMS bit in the IBCR register to 1) with the I^2C bus occupied by another master.

This is because, as shown in Figure 16.4-2 "Diagram of timing at which an interrupt upon detection of " AL bit = 1 " does not occur", when the other master on the I^2C bus starts communication with I^2C disabled (EN bit = 0), the I^2C bus enters the occupied state with no start condition detected (BB bit = 0).

Figure 16.4-2 Diagram of timing at which an interrupt upon detection of "AL bit = 1 " does not occur

Example in which an interrupt (INT bit = 1) upon detection of "AL bit = 1" occurs

When an instruction which generates a start condition is executed (setting 1 to the MSS bit) with the bus busy detected (BB = 1) and the arbitration lost is performed, the INT bit interrupt is generated upon detection of AL bit =1.

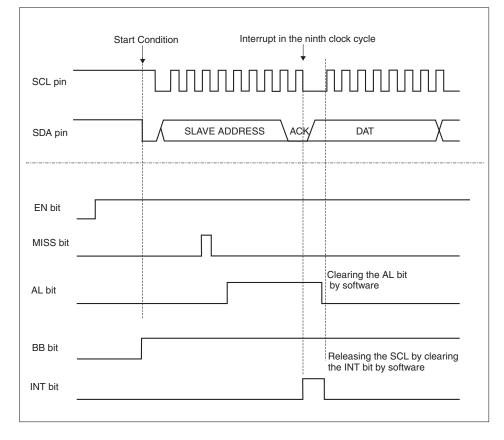
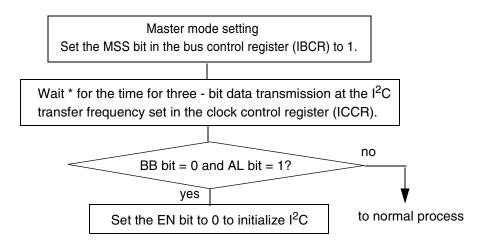


Figure 16.4-3 Diagram of timing at which an interrupt in " AL bit = 1 " occurs

If a symptom as described above can occur, follow the procedure below for software processing.


- 1) Execute the instruction that generates a start condition (set the MSS bit to 1).
- Use, for example, the timer function to wait for the time * for three bit data transmission at the I²C transfer frequency set in the ICCR register.

Example: Time for three - bit data transmission at an I²C transfer frequency of 100 kHz

 $\{1/(100 \times 10^3)\} \times 3 = 30 \ \mu s$

3) Check the AL and BB bits in the IBSR register and, if the AL and BB bits are 1 and 0, respectively, set the EN bit in the ICCR register to 0 to initialize I²C. When the AL and BB bits are not so, perform normal processing.

A sample flow is given below.

*: When "arbitration lost" is detected, the MSS bit is set to 1 and then the AL bit is set to 1 without fail after the time for three - bit data transmission at the I²C transfer frequency.

Clock Control Register (ICCR0/1)

	10	14	13	12	11	10	9	8
Address: 00009EH/ 0000BEH	TEST	—	EN	CS4	CS3	CS2	CS1	CS0
UUUUBEN	W	R	R/W	R/W	R/W	R/W	R/W	R/W
Initial value =>	0	0	0	1	1	1	1	1

[Bit 15] Test bit

This bit is used for testing.

Be sure to write 0 to it.

[Bit 14] Reserved bit

This bit is unused.

Be sure to write 0 to it.

[Bit 13] EN (Enable)

This bit is the enable bit for the I^2C interface.

0	Disabled
1	Enabled

If this bit is set to 0, all bits of the IBSR and IBCR registers (except the BER and BEIE bits) are cleared. This bit is cleared when a bus error occurs (IBCR BER = 1).

Note:

If operation is disabled, the I²C interface immediately stops sending and receiving.

[Bit 12 to 8] CS4 to CS0 (Clock Period Select 4 to 0)

These bits set the frequency of the serial clock.

These bits can be rewritten only when operation is disabled (EN=0 or the EN bit is cleared).

The frequency of the shift clock, fsck, which is calculated as shown below.

fsck=
$$\frac{\Phi}{n \times 12+15}$$
 N > 0 Φ : Machine clock (CLKP) N > 1

Register setting

n	CS4	CS3	CS2	CS1	CS0
1	0	0	0	0	1
2	0	0	0	1	0
3	0	0	0	1	1
31	1	1	1	1	1

Setting disabled for CS4-CS0=00000

Clock frequency	100	kbps	400kbps		
CLKP [MHz]	n fsck		n	fsck	
34	27	100.3	6	390.8	
25	20	98	4	396.8	
17	13	99.4	3	333.3	
12.5	9	101.6	2	320.5	
8.5	6	97.7	1	314.8	
6.25	4	99.2	1	231.5	

CHAPTER 16 I²C INTERFACE

■ 10-bit Slave Address Register (ITBA0/1)

	15	14	13	12	11	10	9	8	
Address: 000096H/	—	—	—	—	—	—	TA9	TA8	ITBAH
0000B6H •	R	R	R	R	R	R	R/W	R/W	
Initial value =>	0	0	0	0	0	0	0	0	
	7	0	~	4	0	0	4	0	
	/	6	5	4	3	2	I	0	
Address: 000097H/ [0000A7H	TA7	TA6	TA5	TA4	TA3	TA2	TA1	TA0	ITBAL
00004711	R/W								
Initial value =>	0	0	0	0	0	0	0	0	

Rewrite this register while operation is disabled (ICCR EN=0).

[Bits 15 to 10] Reserved bits

The values read from these bits are 0s.

[Bits 9 to 0] 10-bit slave address bits (A9 to A0)

If a 10-bit address is enabled (ITMK ENTB=1), slave address data is received in the slave mode and then compared with the ITBA. An acknowledge is sent to the master after the address header of a 10-bit write access is received. If the 1st, 2nd received data and the ITBAL register value are compared and produce a match, an acknowledge signal is sent to the master and the AAS bit is set.

In addition, the I^2C interface receives the address header of 10-bit read access after a repeated START condition is generated.

All bits of the slave address can be masked for the ITMK register setting.

The received slave address is overwritten to the ITBA register. This bit is valid when the ASS bit of the IBSR register is set to 1.

■ 10-bit Slave Address Mask Register (ITMK0/1)

	15	14	13	12	11	10	9	8
Address: 000098H/	ENTB	RAL	—	—	—	—	TM9	TM8
0000B8H	R/W	R	R	R	R	R	R/W	R/W
Initial value =>	0	0	1	1	1	1	1	1
	_		_					
	1	6	5	4	3	2	1	0
Address: 000099H/ 0000B9H	TM7	TM6	TM5	TM4	TM3	TM2	TM1	TM0
00000311	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value =>	1	1	1	1	1	1	1	1

[Bit 15] ENTB (10-bit slave address enable bit)

This bit is the 10-bit slave address enable bit.

0	10-bit slave address disabled
1	10-bit slave address enabled

Write access is enabled while the I²C interface is stopped (ICCR EN=0).

[Bit 14] RAL (Slave address length bit)

This bit indicates the slave address length.

0	7-bit slave address
1	10-bit slave address

If the 10-bit and 7-bit slave address enable bits are both enabled (ENTB=1 and ENSB=1), this bit can be used to determine whether the transfer length of a 10-bit or 7-bit slave address becomes valid (ENTB=1 and ENSB=1). This bit is valid if the AAS bit (IBSR) is set to 1.

This bit is cleared when the interface is disabled (ICCR EN = 0).

This bit is read-only.

[Bits 13 to 10] Reserved bits

These bits are unused. The values read from these bits are always 1s.

[Bits 9 to 0] 10-bit slave address mask bits

These bits mask the bits of the 10-bit slave address register (ITBA). Write access is enabled while the I^2C interface is disabled (ICCR EN=0).

0	This bit not used for comparison of slave addresses
1	This bit used for comparison of slave addresses

Set this bit to enable transmission of an acknowledge to a compound 10-bit slave address. When using this register for comparison of 10-bit slave address, set this bit to 1. The received slave address is overwritten to ITBA. When ASS = 1(IBSE), the specified slave address can be determined by reading the ITBA register.

Each of TM9 to 0 bits of ITMK corresponds to one bit of the ITBA address. If the value of each of the TM9 to 0 bits is 1, the ITBA address becomes valid; if it is 0, the ITBA address becomes invalid.

Example: ITBA address is 0010010111b and ITMK address is 111111100b:

The slave address is in the space from 0010010100_b to 0010010111_b .

7-bit Slave Address Register (ISBA)

_	7	6	5	4	3	2	1	0
Address: 00009BH/	_	SA6	SA5	SA4	SA3	SA2	SA1	SA0
0000BBH	R	R/W						
Initial value =>	0	0	0	0	0	0	0	0

Rewrite this register while operation is stopped (ICCR EN=0).

[Bit 7] Reserved bit

This bit is unused.

The value read from this bit is 0.

[Bits 6 to 0] Slave address bits (A6 to A0)

If a 7-bit slave address is enabled (ISMK ENSB = 1) when slave address data is received in slave mode, these bits of ISBA and the received slave address data are compared. If a slave address match is detected, an acknowledge is sent to the master and the AAS bit is set.

The I²C interface returns an acknowledge in response to reception of the address geader of a 7-bit read access after a repeated START condition is generated.

All bits of a slave address are masked using of the ISMK. The received slave address data is overwritten to the ISBA register. This register is enabled only when AAS (ISBR register) is set to 1.

The I²C interface does not compare ISBA and the received slave address when a 10-bit slave address is specified or a general call is received.

7-bit Slave Address Mask Register (ISMK0/1)

			10			10	0	<u> </u>
Address: 00009AH/	ENSB	SM6	SM5	SM4	SM3	SM2	SM1	SM0
0000BAH	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value =>	0	1	1	1	1	1	1	1

Rewrite this register while operation is stopped (ICCR EN=0).

[Bit 15] ENSB (7-bit slave address enable bit)

This bit is the 7-bit slave address enable bit.

0	7-bit slave address disabled
1	7-bit slave address enabled

[Bits 14 to 8] 7-bit slave address mask bits

0	This bit not used for comparison of slave addresses
1	This bit used for comparison of slave addresses

Set this bit to enable transmission of an acknowledge to a compound 7-bit slave address.

When using this register for comparison of a 7-bit slave address, set this bit to 1. The received slave address is overwritten to ISBA. When ASS = 1 (IBSR), the specified slave address can be determined by reading the ISBA register.

After the I²C interface is enabled, the slave address (ISBA) is rewitten by reception operation. When SMK is rewritten, SMK must be set again to provide the expected operation.

Each of the SM6 to 0 bits of ISMK corresponds to one bit of the ISBA address. If the value of each of the SM6 to 0 bit is 1, the ISBA address becomes valid; if it is 0, the ISBA address becomes invalid.

Example: If ISBA address is 0010111b and ISMK address is 1111100b:

The slave address is in the space from $00101\underline{00}_{b}$ to $00101\underline{11}_{b}$.

Data Register (IDAR0/1)

	7	6	5	4	3	2	1	0
Address: 00009DH/	D7	D6	D5	D4	D3	D2	D1	D0
0000BDH	R/W							
Initial value =>	0	0	0	0	0	0	0	0

[Bits 7 to 0] Data bits (D7 to D0)

Bits D7 to D0 are a data register used for serial transfer. Data is transferred from the MSB.

Since the writing side of this register has double buffers, write data is loaded into the register for serial transfer while the bus is being used (BB=1). When the INT bit (IBCR) is cleared or the bus is idle (IBSR BB = 0), the transfer data is loaded into the internal transfer register. Since, during reading, data is directly read from the register for serial transfer, receive data is valid only while the INT bit (IBCR) is set.

Clock Disable Register (IDBL0/1)

	7	6	5	4	3	2	1	0
Address: 00009FH/	—	—	—	—	—	—	—	DBL
0000BFH	R	R	R	R	R	R	R	R/W
Initial value =>	0	0	0	0	0	0	0	0

[Bit 0] Clock disable bit (DBL)

This bit specifies whether to supply or stop supply of the operating clock for the I²C interface.

This bit can be used in low-power mode.

0	Supplies the clock for I ² C.
1	Stops supply of the clock for I^2C . The I^2C line is opened.

This bit is initialized to 0 by a reset. When 1 is written to this bit, the read value except this register (IBDL) is undefined and writing to other than this bit (this register) is invalid.

Note:

When this bit is set to 1, ${\rm I}^2 {\rm C}$ immediately stops even if send and receive operation is in progress.

16.5 I²C Interface Operation

This section explains the operation of the I^2C interface.

Operational explanation

The I²C bus consists of two bidirectional bus lines used for communication: one serial data line (SDA) and one serial clock line (SCL). The I²C interface has two corresponding open-drain I/O pins (SDA and SCL), enabling wired logic.

START condition

Write 1 to the MSS bit while the bus is open (BB=0, MSS=0) to place the I²C interface in master mode and to generate a START condition.

The interface sends the value of the IDAR register as a slave address.

To generate a repeated START condition, write 1 to the SCC bit while the interrupt flag is set in bus muster mode (IBCR MSS = 1 and INT = 1).

Write 1 to the MSS bit while the bus is being used (IBSR BB=1 and TRX=0, IBCR MSS=0 and INT=0) to cause the interface to start transmission after waiting for the bus to be released. If, during this time, the interface in slave mode is receiving a write access, it starts transmission after the transfer is completed. Then the interface releases the bus.

If the interface is sending data, it does not start transmission even though the bus has been released.

To use this feature, it is important to check the following:

- Whether the interface is specified as a slave (IBCR MSS=0, IBSR AAS=1)
- Whether data byte transmission is normal (IBSR AL=1) or not (IBCR MSS=1) when the next interrupt is received

STOP condition

Write 0 to the MSS bit in master mode (IBCR MSS=1, INT=1) to generate a STOP condition and to place the interface in slave mode. Writing 0 to the MSS bit in any other state is irrelevant.

After the MSS bit is cleared, the interface tries to generate a STOP condition. However, a STOP condition will not be generated if the SCL line is driven to L. An interrupt is generated after the next byte is transferred.

Notes:

It takes time from writing 0 to the MSS bit until the STOP condition is generated.

Disabling the I²C interface (DBL=1:IDAR or EN=0:ICCR) before the "STOP " condition occurs stops the operation immediately and generates an invalid clock on the SCL line.

Before disabling the I²C interface (DBL=1:IDAR or EN=0:ICCR), check that the "STOP " condition has occurred (BB=0:IBSR).

Slave Address Detection

In slave mode, BB=1 is set after a START condition is generated. The receive data from the master device is stored in the IDAR register.

• When a 7-bit slave address is enabled (ISMK ENSB=1)

After 8-bit data is received, the IDAR and ISBA register values are compared. However, the bits masked in the ISMK register are not compared.

If the comparison result is a match, the ASS bit is set to 1, an acknowledge is sent to the master, and the value of Bit 0 of the receive data is inverted and stored in the TRX bit.

O When a 10-bit slave address is enabled (ITMK ENTB=1)

If the header section of a 10-bit address {11110,TA1,TA0,write} is detected, an acknowledge is sent to the master and the value of bit 0 of the receive data is inverted and stored in the TRX bit. No interrupt occurs at this time.

Then, the next transfer data and the low-order data of the ITBA register are compared. They are compared with the bits masked in the ISMK register. If the result is a match, the AAS bit is set to 1 and an acknowledge is sent to the master. An interrupt occurs at this time.

If the address specification as a slave has been made and a repeated START condition is detected, the AAS bit is set to 1 and an interrupt occurs after the header section of a 10-bit address {11110,TA0,TA1,read} is received.

The interface has two independent registers: a 10-bit slave address register (ITBA) and a 7-bit slave address register (ISBA). If both registers are enabled (ISMK ENSB=1, ITMK ENTB=1), an acknowledge can be sent to both 10-bit and 7-bit addresses.

The receive slave address length in slave mode (AAS = 1) can be determined using the RAL bit of ITMK register. In master mode, disabling both registers (ISMK ENSB = 0, ITMK ENTB = 0) can prevent a slave address from being generated for the I^2C interface.

All slave addresses can be masked by setting the ITMK and ISMK registers.

Slave Address Mask

The slave address mask registers (ITMK/ISMK) can mask each of the bits of slave address registers. A bit set to 1 in the mask register is compared while a bit set to 0 is not compared.

A receive slave address can be recognized by reading the ITBA register (when a 10-bit address is received) or the ISBA register (when a 7-bit address is received) in the slave mode (IBSR ASS=1).

If the bit mask is cleared, the interface can be used as the bus monitor because it is always accessed as a slave.

Note: This feature does not become a real bus monitor because it returns an acknowledge when a slave address is received even though no other slave device is available.

Master Addressing

In master mode, BB=1 and TRX=1 are set after a START condition is generated and the IDAR register value is sent starting with the MSB. After address data is sent and an acknowledge is received from a slave device, Bit 0 of the send data (Bit 0 of the IDAR register after transmission) is inverted and stored in the TRX bit. This operation is also performed for a repeated START condition.

Two bytes are sent for a 10-bit slave address during write access. The first byte data consists of the header section of that indicates a 10-bit sequence {11110,A9,A8,0} and the second byte data consists of the low-order 8-bit of the slave address {A7,A6,A5,A4,A3,A2,A1,A0}.

The series of transmissions described above bytes places the 10-bit slave device in the read access state and generates a repeated START condition as well as the header section {11110,A9,A8,1} that will be used for read access.

7-bit slave access	write	START condition A6,A5,A4,A3,A2,A1,A0,0
	read	START condition A6,A5,A4,A3,A2,A1,A0,1
10-bit slave	write	START condition 11110,A9,A8,0,A7,A6,A5, A4,A3,A2,A1,A0
access	read	START condition 11110,A9,A8,0,A7,A6, A5,A4,A3,A2, A1,A0 Repeated START condition: 11110,A9,A8,1

Arbitration

Arbitration occurs if, during sending in master mode, data is also sent by other master devices. Arbitration lost is recognized if the local device's transmission data is 1 and the level on the SDA line is set to L. Then, AL=1 is set.

The AL bit is also set if an unnecessay START condition is detected in the first bit of the data and neither a START nor a STOP condition can be generated for the same reason.

If arbitration lost is detected, the MSS and TRX bits are set to 0 and the device immediately enters slave receive mode and returns an acknowledge when it receives the device's own slave address.

Acknowledge

The receiving device sends an acknowledge to the sending device.

The ACK bit (IBCR) sets whether an acknowledge should be sent when data is received.

If, during data transmission in slave mode (read access from other masters), an acknowledge is not returned from the master, the TRX bit is cleared to 0 and the device enters receive mode. This allows the master to generate a STOP condition when the slave opens the SCL line.

In master mode, read the LRB bit (IBSR) to check for an acknowledge from the slave.

Bus Error

A bus error is recognized and the I²C interface is stopped if:

- A violation of the basic convention on the I²C bus during data transfer (including the Ack bit) is detected.
- A stop condition in master mode is detected.
- A violation of the basic convention on the I²C bus while the bus is idle is detected.

Communication Error

If, during transmission in master mode, an illegal clock is generated on the SCL line due to noise or for some other reason, the transmission bit counter of the l^2C interface may run quickly, causing the slave to hang while L has appeared on the SDA line in the ACK cycle.

An error (AL=1, BER=1) does not occur for such an illegal clock.

If this situation occurs, perform the following error processing:

- 1. A communication error can be assumed if LRB=1 when MSS=1, TRX=1, INT=1.
- 2. Set EN to 0 and then set EN to 1 to cause SCL to generate one clock on a pseudo basis. This action causes the slave to release the bus. The period from the time EN is set to 0 until EN is set to 1 must be long enough for the slave to recognize it as a clock (about as long as the H period of a transmission clock).
- 3. Since the TBSR and IBCR are cleared when EN is set to 0, perform retransmission processing from the START condition. No STOP condition is generated at this point if BSS is set to 0. Insert an interval equal to or longer than n x 7 x tCPP between the point at which EN is set to 1 and the point at which MSS is set to 1 (START condition).

Example:

High-speed mode: 6 x 7 x 30.3=about 1.273 µs

Standard mode: 27 x 7 x 30.3=about 5.727 µs

Note: Since BER, if set, is not cleared even if EN is set to 0, first clear it and then resend it.

Other items

1. Addressing after arbitration lost occurs

After arbitration lost occurs, check whether or not the local device is addressed using software.

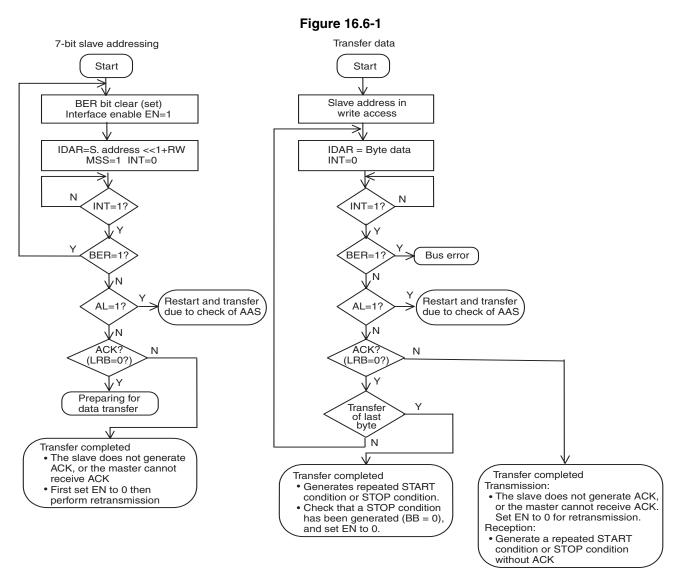
When arbitration lost occurs, the device becomes a slave in terms of hardware. However, after one-byte transfer is completed, both the CLK and DATA lines are pulled to L. Thus, if the device is not addressed, immediately open the CLK and DATA lines. If the device is addressed, open the CLK and DATA lines after preparing for slave transmission or reception. All of these things must be processed using software.

2. Interrupt condition when one-byte transfer is completed

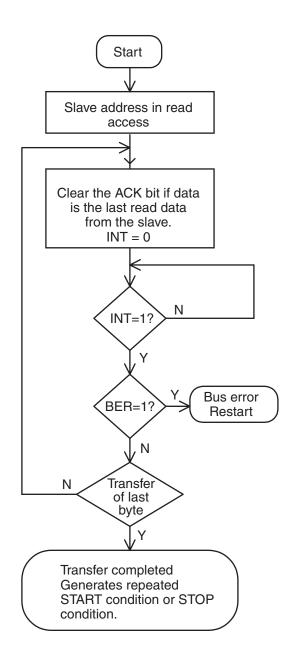
Since the I²C bus has only one interrupt, an interrupt source is generated when one-byte transfer is completed or when an interrupt condition is met.

Since multiple interrupt conditions must be checked using one interrupt, each of the flags must be checked by the interrupt routine. The following lists the interrupt conditions used when one-byte transfer is completed:

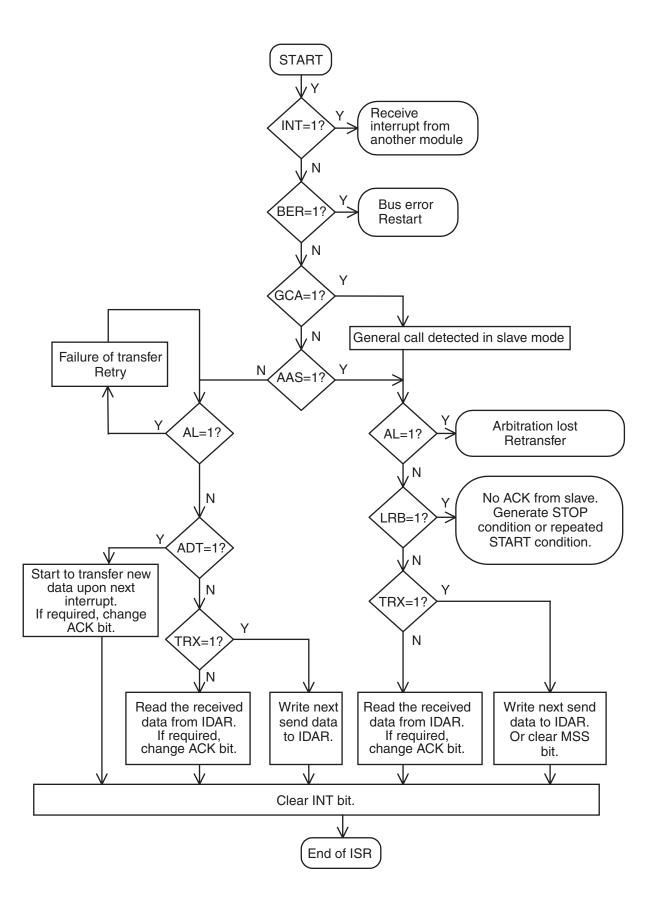
- The device is a bus master.
- The device is an addressed slave.
- A general call address is received.
- Arbitration lost occurs.


3. Arbitration lost and interrupt source

When arbitration lost is detected, an interrupt source is generated, not immediately but after one-byte transfer is completed. When arbitration lost is detected, the device becomes a slave in terms of hardware. However, in slave mode, a total of nine clocks must be output before an interrupt source can be generated. Thus, since an interrupt source is not immediately generated, no processing can be performed after arbitration lost occurs.


16.6 Operation Flowcharts

This section provides the operateflowcharts for the I²C interface.


Example of Slave Address and Data Transfer

Example of Receive Data

Interrupt Processing

CHAPTER 17 16-bit Free-run Timer

This chapter gives an overview of the 16-bit free-run timer, the configuration and functions of its registers, and its operation.

- 17.1 "Overview of 16-bit Free-run Timer"
- 17.2 "Registers of the 16-bit Free-run Timer"
- 17.3 "Block Diagram of the 16-bit Free-run Timer"
- 17.4 "Details on Registers of the 16-bit Free-run Timer"
- 17.5 "Operation of the 16-bit Free-run Timer"
- 17.6 "Precautions on Using the 16-bit Free-run Timer"

17.1 Overview of 16-bit Free-run Timer

This section explains the overview of the 16-bit free-run timer

Overview

The 16-bit free-run timer consists of a 16-bit up counter and control status register. The count values of this timer are used as a base timer for output compare and input capture operations.

- The user can select a counter operating clock of four clocks.
- An interrupt can be generated as result of a counter overflow.
- The counter value can be initialized by the mode setting, and a compare match with the compare clear register0.

17.2 Registers of the 16-bit Free-run Timer

This section explains the registers of the 16-bit free-run timer.

■ Registers of 16-bit Free-run timer

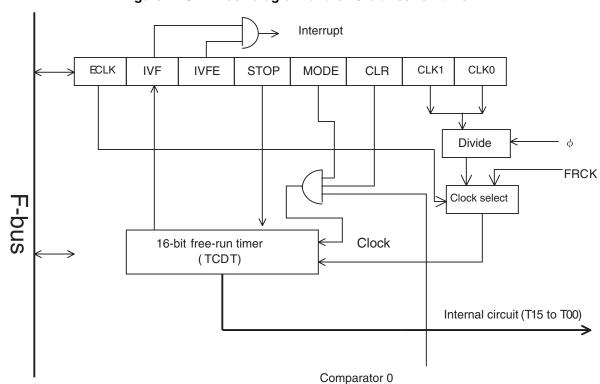
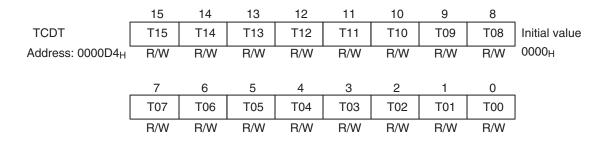

15 T15	14 T14	13 T13	12 T12	11 T11	10 T10	9 T09	8 T08	Timer data register
		110	112		110	100	100	(high-order bits) (TCDT)
7	6	5	4	3	2	1	0	
T07	T06	T05	T04	T03	T02	T01	Т00	Timer data register (low-order bits)
				•		•		(TCDT)
7	6	5	4	3	2	1	0	Timor control register
ECLK	IVF	IVFE	STOP	MODE	CLR	CLK1	CLK0	Timer control register (low-order bits)
								(TCCS)

Figure 17.2-1 Registers of multifunctional timer

17.3 Block Diagram of the 16-bit Free-run Timer

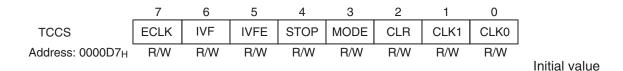
This section shows the block diagram of the 16-bit free-run timer

■ Block diagram of the 16-bit free-run timer



17.4 Details on Registers of the 16-bit Free-run Timer

This section details the registers of the 16-bit free-run timer.


■ Timer Data register (TCDT)

This register allows reading the counter value of the 16-bit free-run timer. The counter value is cleared to 0000 at reset. To set a timer value, write it to this register in the stop status (STOP = 1). Access this register in units of words. The 16-bit free-run timer is initialized by following one of the methods below.

- Initialization by reset
- Initialization by clearing the control status register (CLR)
- Initialization by matching a compare clear register (Ch. 0 compare register) value with a timer counter value (A mode must be set.)

■ Timer control status register (TCCS)

[Bit 7]: ECLK

This bit selects the internal or external count clock source of the 16-bit free-run timer.

The clock is changed immediately after writing to this bit. Change this bit while the output compare or input capture are stopped.

ECLK	Clock selection
0	Internal clock source is selected (initial value).
1	The clock is input from external terminal (FRCK).

Note:

If an internal clock is selected, the counter clock must be set by bit1 to bit0 (CLK1 to CLK0). This count clock becomes a base clock. To input a clock signal from the FRCK, set the corresponding DDR bit to 0.

The minimum pulse width required for the external clock is 2.T (T: peripheral clock machine cycle).

When the output compare unit is used with the external clock specified, a compare match and interrupt occur in the next clock cycle. To output a compare match and generate an interrupt, therefore, input at least one clock cycle after the compare match.

[Bit 6]: IVF

This bit is an interrupt request flag of the 16-bit free-run timer. This bit is set to 1 either when the 16-bit free-run timer causes an overflow or when mode setting causes a compare match with compare register 0 to clear the counter. If an interrupt request permission bit (bit 5: IVFE) is set, an interrupt occurs. This bit is cleared by setting it to 0. Writing 1 has no effect. The reading result of read modify write instructions is always 1.

IVF	Interrupt request flag
0	No interrupt request (initial value)
1	Interrupt request

[Bit 5]: IVFE

This bit is an interrupt permission bit for the 16-bit free-run timer. When this bit is 1 and the interrupt flag (bit 6: IVF) is set to 1, an interrupt occurs.

IVFE	Interrupt enable
0	Prohibits an interrupt (initial value)
1	Allows an interrupt.

[Bit 4]: STOP

This bit is used to stop the counter of the 16-bit free-run timer. When the bit is set to 1, the counter of the timer is stopped. When the bit is set to 0, the counter of the timer is started.

STOP	Count operation				
0	Allows counting (operation) (initial value)				
1	Prohibits counting (stop)				

Note:

When the 16-bit free-run timer is stopped, output compare operation is stopped as well.

[Bit 3]: MODE

This bit is used to set the initialization condition of the 16-bit free-run timer. When this bit is set to 0, the counter value can be initialized by reset or with the clear bit (bit 2: CLR). When the bit is set to 1, the counter value can be initialized by reset, with the clear bit (bit 2: CLR), or by a match with the value of compare register 0 during an output compare operation.

N	NODE	Initialization of reset
	0	Initialization by reset or the clear bit (initial value)
	1	Initialization by reset, clear bit, or compare register 0

Note:

The counter value is initialized when the counter value is changed.

[Bit 2]: CLR

This bit is used to initialize the value of the operating 16-bit free-run timer to 0000_{H} . When this bit is set to 1, the counter is initialized to 0000_{H} . Setting this bit to 0 has no effect. The returned value is always 0.

CLR	Meaning of flag					
0	This value has no effect. (initial value)					
1	The counter value is initialized to 0000 _H .					

Note:

The counter value is initialized when the counter value is changed. When initializing the counter value while the timer is stopped, set the data register to 0000_H.

[Bits 1, and 0]: CLK1, and CLK0

These bits are used to select a counter clock for the 16-bit free-run timer. Immediately after these bits are set to a new value, the clock is switched. Therefore, change these bits while the output compare and input capture are stopped.

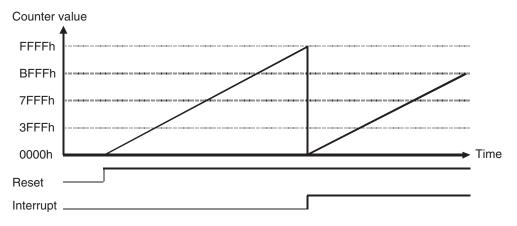
CLK1	CLK0	Counter clock	φ=25MHz	φ=12.5MHz	φ=6.25MHz	φ=3.125MHz
0	0	φ/4	160 ns	320 ns	640 ns	1.28 μs
0	1	φ/16	640 ns	1.28 μs	2.56 μs	5.12 μs
1	0	ф/32	1.28 μs	2.56 μs	5.12 μs	10.24 μs
1	1	φ/64	2.56 μs	5.12 μs	10.24 μs	20.48 μs

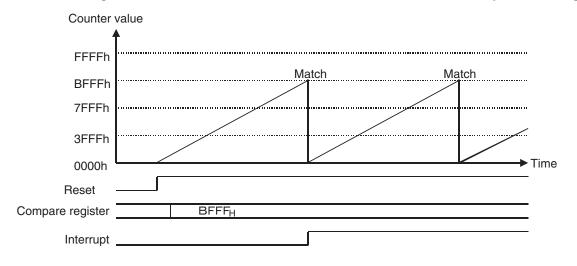
φ: Machine clock

17.5 Operation of the 16-bit Free-run Timer

This section explains the operation of the 16-bit free-run timer.

operational Explanation


The 16-bit free-run timer starts counting from the counter value 0000 after releasing reset. The counter value becomes the reference time of the 16-bit output compare and the 16-bit input capture.


Explanation of 16-bit free-run timer operation

The counter value is cleared under the following conditions.

- When an overflow occurs
- When the value matches that of the compare clear register (compare register of output compare Ch. 0) (A mode must be set.)
- When the CLR bit in the TCCS register is set to 1 during operation
- When 0000_H is written to TCDT while the timer is stopped
- When a reset occurs

An interrupt occurs when an overflow occurs and the counter is cleared because the counter value matches that of the compare clear register 0. (For a compare match interrupt, a mode must be set.)

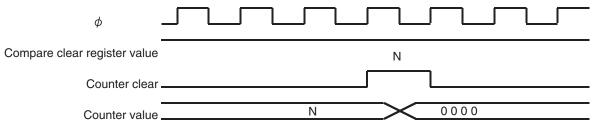
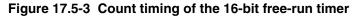
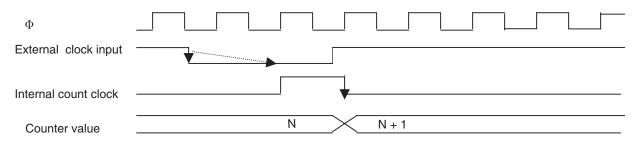


Figure 17.5-1 Clearing the counter when the counter value matches that of the compare clear register

■ Timing to clear the 16-bit free-run timer


The counter is cleared by reset, software, or when the counter value matches that of the compare clear register. When clearing the counter by way of reset or software, it is cleared immediately when a clear command is issued. However, when the counter is cleared because of a match with the value in the compare register 0, clearing is performed in synchronization with the count timing.



Count timing of the 16-bit free-run timer

The 16-bit free-run timer is incremented by the input clock (internal or external clock). When an external clock is selected, the falling edge (indicated by a down arrow) of the external clock is synchronized with the system clock, then the 16-bit free-run timer count up at the falling edge of the internal count clock.

17.6 Precautions on Using the 16-bit Free-run Timer

This section gives notes on the 16 - bit free - run timer.

Notes

- 1. If the interrupt request flag set timing and clear timing are simultaneous, the flag setting operation overrides the flag clearing operation.
- 2. When bit 2 (counter initialize bit: CLR) in the control status register is set to 1, it holds the value until the internal counter clear timing and clears itself at that timing. If the clear timing and writing 1 are performed simultaneously, the writing takes precedence and the counter initialization bit keeps on holding 1 until the next clear timing.
- 3. The counter clear operation is valid only while the internal counter is operating (with the internal prescaler also operating). To clear the counter being stopped, set the timer count data register to 0000H.

CHAPTER 17 16-bit Free-run Timer

CHAPTER 18 Input Capture

This chapter explains the overview of the input capture, the configuration and functions of its registers, and its operation.

- 18.1 "Overview of Input Capture"
- 18.2 "Input Capture Registers"
- 18.3 "Block Diagram of Input Capture"
- 18.4 "Details on Registers of Input Capture
- 18.5 "Operation of Input Capture"

18.1 Overview of Input Capture

This section explains the overview of the input capture.

Overview of Input Capture

The input capture module detects either or both of the rising and falling edges of an externally input signal, and store the 16-bit free-run timer value set at that time in a register. The input capture module can also generate an interrupt when an edge of the input signal is detected.

An input capture consists of an input capture register, and a control register. An external input pin is assigned to each input capture.

- The user can select the effective edges (rising edge, falling edge, and both edges) of external input signals.
- Interrupts can be generated by detecting the effective edge of an external input signal.

Only the MB91302A and MB91V301A contain four channels for the input capture.

18.2 Input Capture Registers

This section shows the input capture registers.

■ Registers of the input capture

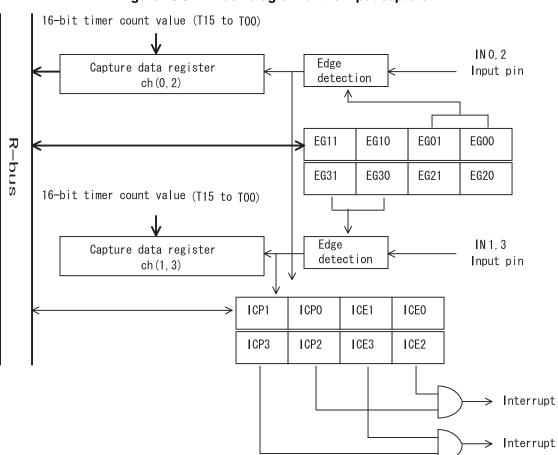
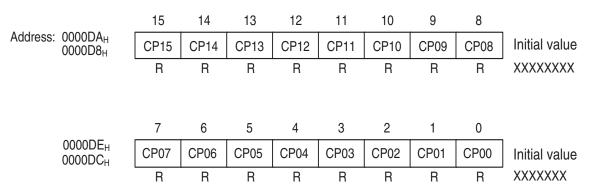

15	14	13	12	11	10	9	8	Input conturo data ragiatar
CP15	CP14	CP13	CP12	CP11	CP10	CP09	CP08	Input capture data register (high-order bits)
								(IPCP)
7	6	5	4	3	2	1	0	
CP07	CP06	CP05	CP04	CP03	CP02	CP01	CP00	Input capture data register (low-order bits)
							J	(IPCP)
_		_		-	-			
7	6	5	4	3	2	1	0	Capture control register
ICP3	ICP2	ICE3	ICE2	EG31	EG30	EG21	EG20	Capture control register (ICS23)
7	6	5	4	3	2	1	0	• • • • • •
ICP1	ICP0	ICE1	ICE0	EG11	EG10	EG01	EG00	Capture control register (ICS01)
	•	•	•	•		•		

Figure 18.2-1 Registers of the input capture

18.3 Block Diagram of Input Capture

This section shows a block diagram of the input capture

■ Block diagram of the input capture



18.4 Details on Registers of Input Capture

This section describes the details on the registers of the input capture. The input capture has the following two data registers:

- Input capture data registers (IPCP0 to 3)
- Input capture control registers (ICS01, ICS23)

■ Input capture data registers (IPCP0 to 3)

The input capture data registers (IPCP0 to 3) are used to store the value of the 16-bit free-run timer when a effective edge of the corresponding external pin input waveform is detected. This register must be accessed in 16-bit or 32-bit dates. The user cannot write any value to this register.

■ Input capture control registers (ICS01, ICS23)

ICS23	7	6	5	4	3	2	1	0	
Address: 0000E1 _H	ICP3	ICP2	ICE3	ICE2	EG31	EG30	EG21	EG20	Initial value
	R/W	0000000							
ICS01	7	6	5	4	3	2	1	0	
Address: 0000E3 _H	ICP1	ICP0	ICE1	ICE0	EG11	EG10	EG01	EG00	Initial value
	R/W	00000000							

[Bits 7 and 6]: ICP3, ICP2, ICP1, and ICP0

These bits are used as input-capture interrupt flags. When a effective edge of an external input pin is detected, these bits are set to 1. When the interrupt permission bits (ICE3, ICE2, ICE1, and ICE0) are also set, an interrupt is generated as soon as the effective edge is detected. To clear these bits, set them to 0. Setting these bits to 1 has no effect. Read operations with read modify write instructions always read 1 for these bits.

ICPn	Input capture interrupt flag
0	No effective edge is detected. (initial value)
1	An effective edge is detected.

"n" in ICPn indicates an input capture channel number.

[Bits 5 and 4]: ICE3, ICE2, ICE1, and ICE0

These bits are used as input-capture interrupt permission bits. When these bits are set to 1 and the interrupt flags (ICP3, ICP2, ICP1, and ICP0) are also set to 1, an input-capture interrupt occurs.

ICEn	Input capture interrupt specification
0	Prohibits interrupts. (initial value)
1	Allows an interrupt.

"n" in ICEn indicates the input capture channel number.

[Bits 3 to 0]: EG31, EG30, EG21, EG20, EG11, EG10, EG01, and EG00

These bits are used to select the effective edge polarity of the external input. They are also used to enable input capture operations.

EG31	EG30	Edge detection polarity			
0	0	No edge is detected. (stop status) (initial value)			
0	1	A rising edge is detected. \uparrow			
1	0	A falling edge is detected. \downarrow			
1	1	Both edges are detected. \uparrow & \downarrow			

EGn1 and EGn0: n corresponds to the channel number of the input capture.

18.5 Operation of 16-bit Input Capture

This section explains the operation of the input capture.

Operational explanation

When the set effective edge is detected, the 16-bit input capture can capture the 16-bit free-run timer value to the capture register to generate an interrupt.

■ Operation of 16-bit input capture

Counter	value						
FFFFh							
BFFFh	l		\sim			\frown	
7FFFh							_
3FFFh				-/			
0000h				/			Time
Reset-							
INO -	1	<u> </u>					-
IN1 –							
IN2 _		1			4		
Data register 0	Not fixed	3FFFh				BFFFh	_
Data register 1		Not fi	xed				
Data register 2	Not f	fixed	BFFF	ħ	7FFFh		-
Capture 0 interrupt_							•
Capture 1 interrupt_							•
Capture 2 interrupt]	i				•
Capture 0 =	rising edge falling edge				An inter because	rupt occurs a e of a effective	again /e edge.
Capture 2 =				Cle	aring an int	errupt by use	e of software

Figure 18.5-1 Example of capture timing for the input capture

■ Input timing of 16-bit input capture

Figure 18.5-2 Input timing of input capture							
ϕ							
Counter value		Ν	_X	N + 1	X		
Input capture input							
				Effective ed	ge		
Capture signal							
Capture register value					N + 1		
Interrupt							

CHAPTER 19 Program Loader Mode (Supported only by the MB91302A (IPL integrated model))

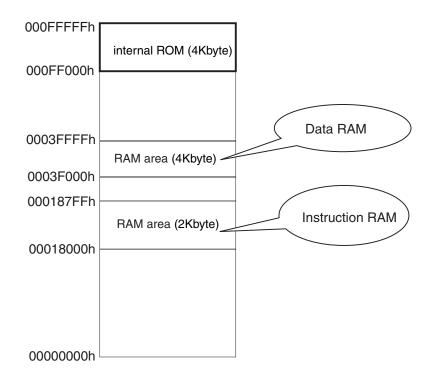
This chapter outlines the program loader mode and describes the settings for the program loader and operations in that mode.

- 19.1 "Overview of the Program Loader Mode"
- 19.2 "Setting the Program Loader"
- 19.3 "Operations in the Program Loader Mode"
- 19.4 "Example of Using the Program Loader Mode to Write to Flash Memory

19.1 Overview of the Program Loader Mode

This section gives an overview of the program loader mode.

■ Overview of the Program Loader Mode


In the program loader mode, the program loader stored in the internal ROM uses UART ch.0 to perform serial communication with an external device, load a program from the external device to the internal RAM (two kilobytes), and to start the loaded program.

For serial communication, asynchronous or synchronous communication can be selected depending on the state of the SIN0 pin of UART ch.0 upon initialization by INIT. For asynchronous communication, however, the oscillation frequency is 17.0 MHz (quadrupled by the PLL to 68.0 MHz as the CPU's operating clock frequency). For asynchronous communication, be sure to use the device at an oscillation frequency of 17.0 MHz as it operates at a baud rate of 9600 bps.)

Note that the program loader mode is supported only by the MB91302A (IPL integrated model).

Memory Map

The loader program stored in the internal ROM (4 kilobytes) is executed in the internal - ROM/ external - bus mode, resulting in a memory map as shown below. Programs can be located in the following instruction RAM area (instruction Cache set for RAM mode). To access, for example, an external area, use the downloaded program to make the required register settings.

19.2 Setting the Program Loader

This section describes how to set the program loader.

■ Setting the Program Loader

The program loader stored in internal ROM is started when the MD2, MD1, MD0, and SIN0 pins are set as in Table 19.2-1 during initialization by INIT.

For UART ch.0 used for serial communication with external devices, asynchronous or synchronous communication is determined depending on the state of the SIN0 pin upon initialization by INIT. For the settings of SIN0, Figure 19.2-1 and Figure 19.2-2 show its reset timings.

		Pin N	lame	
Specifications	MD2	MD1	MD1	SIN0
Asynchronous Communication	0	0	0	1
Synchronous Communication	0	0	0	0

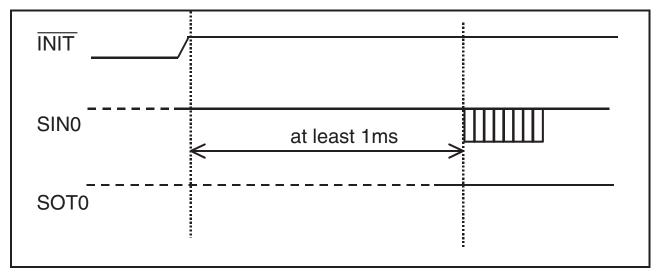
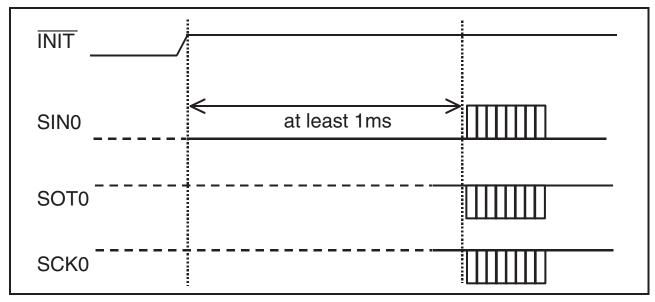



Figure 19.2-1 Reset Timing (Asynchronous Communication)

19.3 Operations in the Program Loader Mode

This section describes the operations for asynchronous communication and synchronous communication in the program loader mode.

Operations in the Program Loader Mode

O Asynchronous communication at an oscillation frequency of 17.0 MHz

Serial communication is performed in the UART ch.0 asynchronous mode (mode 0).

The baud rate is 9600 bps at a machine clock frequency of 68.0 MHz (obtained by quadrupling an oscillation frequency of 17.0 MHz using the PLL).

The settings for serial communication are a data length of 8 bits, a stop bit length of 1 bit, no parity, and LSB - first.

O Synchronous Communication

Serial communication is performed in the UART ch.0 synchronous mode (mode 2). The baud rate can be selected freely with the clock input (SCK0).(The frequency of clock input SCK0 is used as the baud rate as it is.)

The maximum frequency of the clock input is up to 1/8 of the frequency of the peripheral operating clock signal without exceeding 3.125 MHz.

The peripheral operating clock frequency is given by the following equation.

Peripheral operating clock frequency = machine clock frequency (obtained by quadrupling the oscillation frequency using the PLL)/2

The settings for the serial communication are a data length of 8 bits, no parity, and LSB - first.

In either mode

- Command data (00H)
- Four bytes of download destination RAM address (00018000H to 000187FFH)
- Downloaded four bytes (up to 000007FFH)

Three items of download information data are given to the FR side byte by byte, starting at the high - order byte, and their checksum data (the lower eight bits taken from the sum of all the data items) and entered the dowloaded routine to the RAM. Then, the data to be downloaded to internal RAM is given to the FR side byte by byte starting at the high - order byte in the same way and checksum data is also given. Upon completion of transfer, a jump to RAM takes place and the downloaded program is executed.

CHAPTER 19 Program Loader Mode (Supported only by the MB91302A (IPL integrated model))

Commands

Listed below are the commands issued to the FR and the response signals from the FR.

		FR		PC etc.
Command	Download	(Reception)	<-	00H
	Reset	(Reception)	<-	18H
	RAM Jump	(Reception)	<-	C0H
Command	Abnormal Command	(Reception Command & F0H) 04H	->	(Reception)
Response	Abnormal SUM Check	{Reception Command (00H) & F0H} 02H	->	(Reception)
	RESET Command Reception	11H	->	(Reception)
	DOWN LOAD Command Reception	01H	->	(Reception)

Operation Example

O Transferring 0000005BH - byte data to RAM address 00018000H

		PC etc.		FR
Command Data	1	00H	->	(Reception)
	2	00H	->	
Download destination address	3	01H	->	(Reception)
Download destination address	4	80H	->	(neception)
	5	00H	->	
	6	00H	->	
Number of download bytes	7	00H	->	(Reception)
(91 bytes)	8	00H	->	(Neception)
	9	5BH	->	
SUM Check Data	10	DCH	->	(Reception)
Acknowledge data transmission from the FR	11	(Reception)	<-	01H
Data Transmit	12	DATA	->	(Reception)
SUM Check Data	13	(*)	->	(Reception)

* The lower eight bits are fetched from all transmit data items added together.

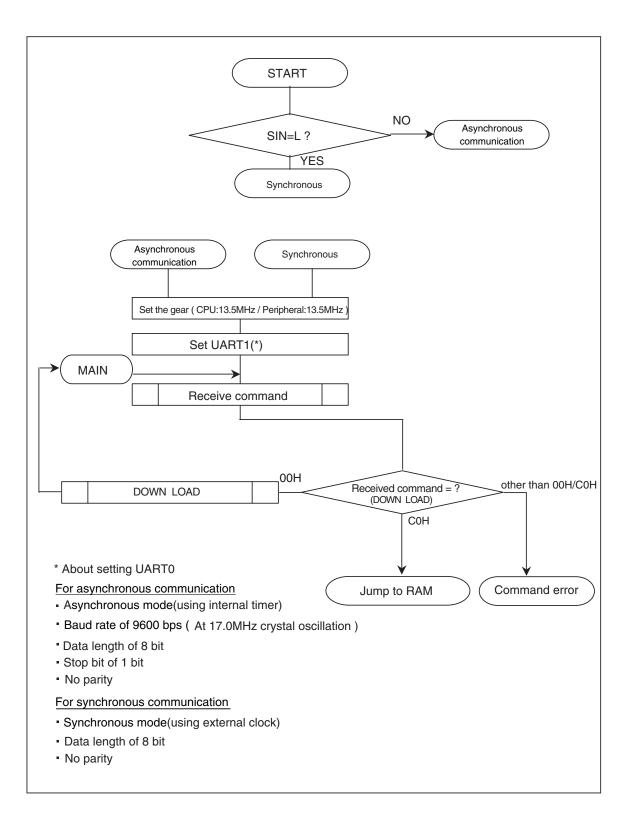
O Program counter causing a jump to a RAM address after data transfer

		PC etc.		FR
Command Data	1	C0H	->	(Reception)
	2	00H	->	
Dummy Data	3	00H	->	(Reception)
Dummy Data	4	00H	->	(neception)
	5	00H	->	
	6	00H	->	
Dummy Data	7	00H	->	(Reception)
Duniny Data	8	00H	->	(neception)
	9	00H	->	
SUM Check Data	10	C0H	->	(Reception)
Jump to a RAM	11	-	-	*

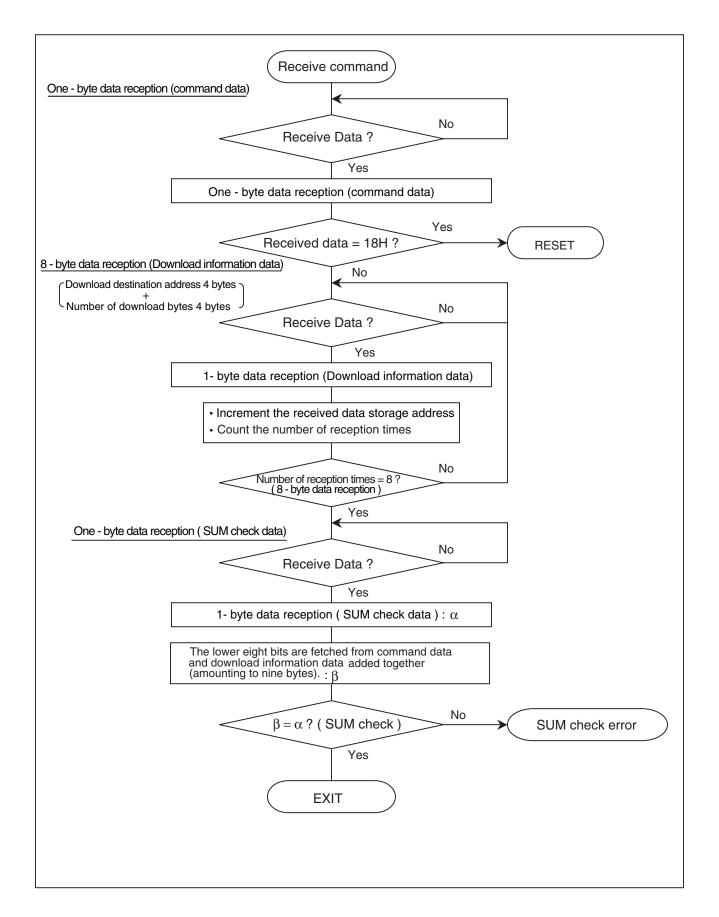
* The jump destination contained in the program counter is the download destination address specified when data is transferred to RAM. Command data (C0H), dummy data (eight bytes), and checksum data are required before a jump can take place.

O Issuing a reset command, for example, from a personal computer

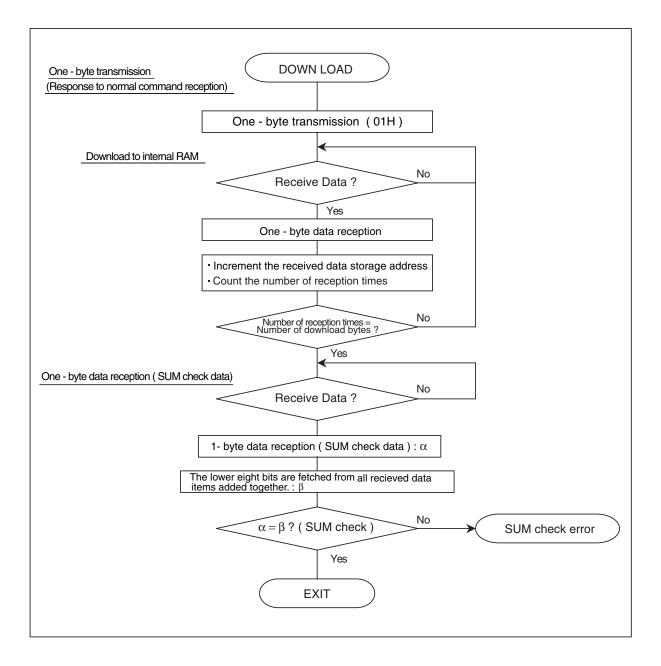
		PC etc.		FR
Command Data	1	18H	->	(Reception)
Reset	3	-	-	(*)

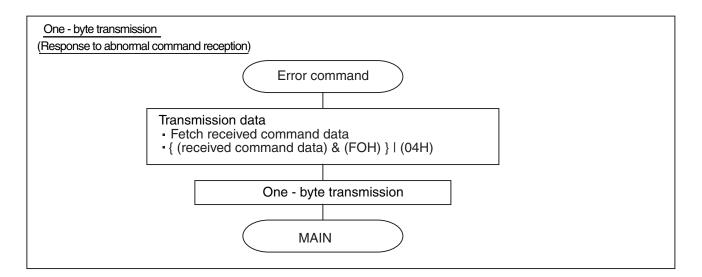

* Issuing command data 18H, for example, from a personal computer, causes immediate transition to the reset sequence.

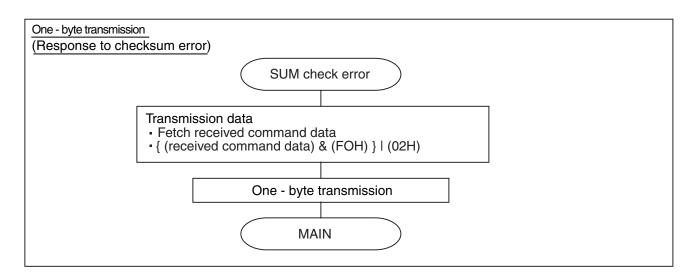
For detailed operations, see the flowcharts for dedicated ROM embedded programs from the next page on.

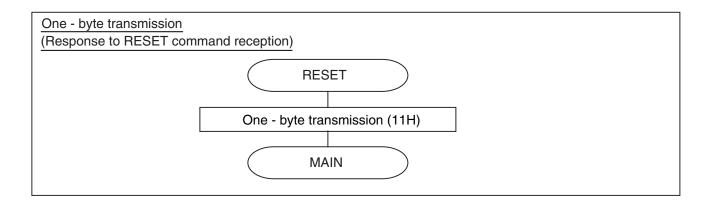

For detailed operations of the UART and the states of all of its pins, see Chapter 13 " UART " or the " At initialization (INIT) " column of the " Pin State Table " in the Appendix.

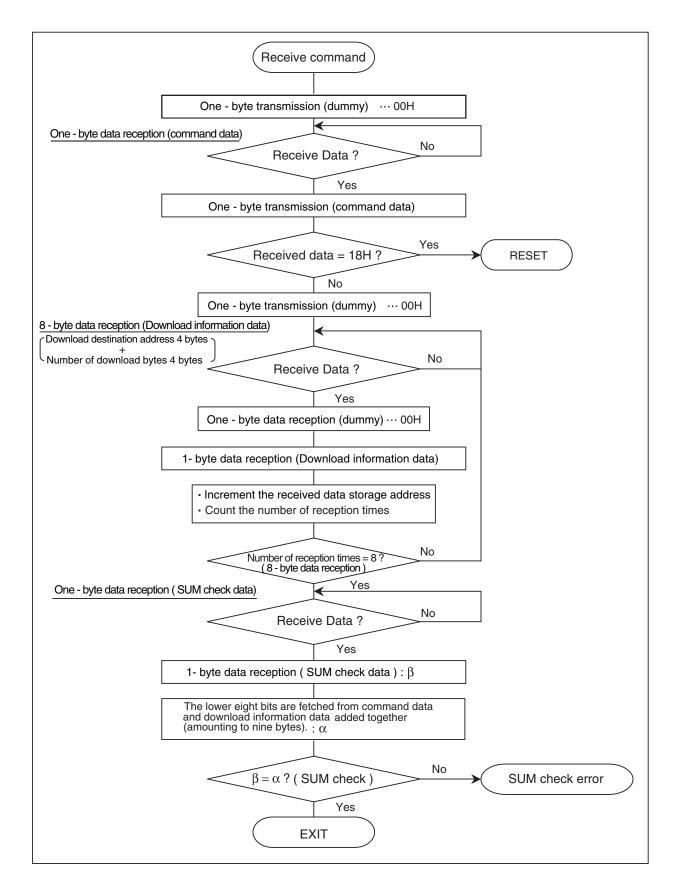
Flowcharts

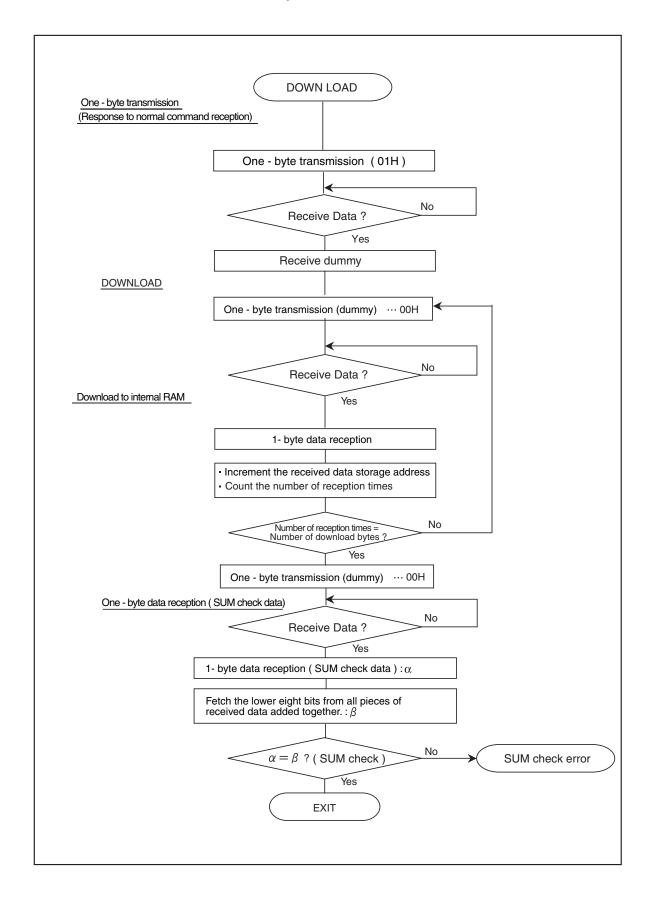

O Main program flowchart

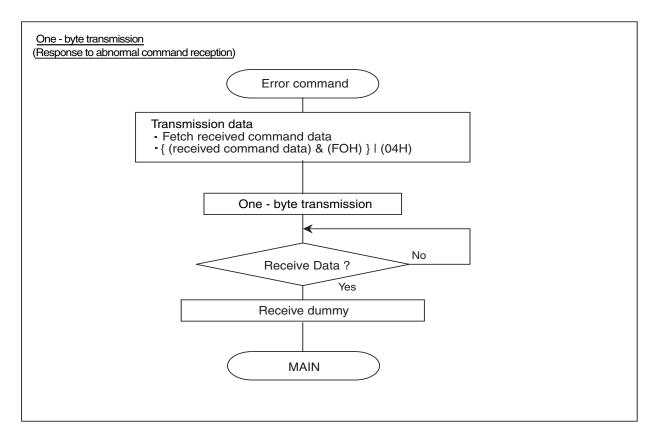

O Subroutine " Command reception " in Asynchronous mode

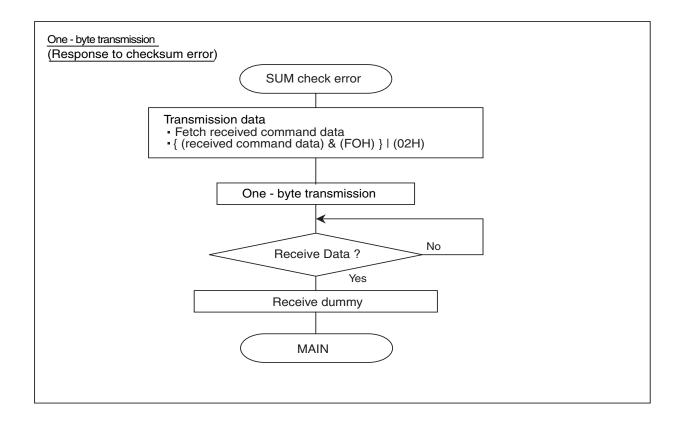

O Subroutine " DOWN LOAD" in Asynchronous mode

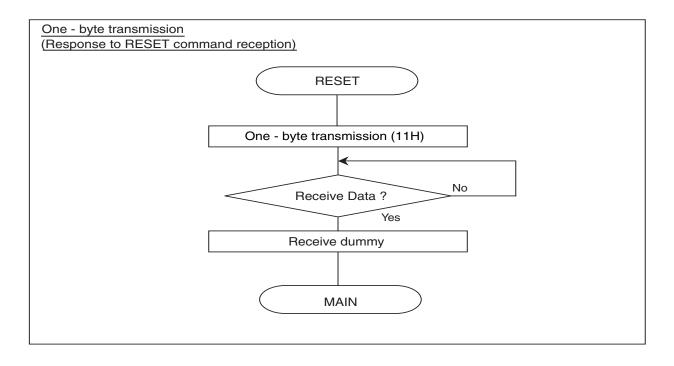

O Subroutine " Command error " in Asynchronous mode


O Subroutine " SUM check error " in Asynchronous mode


O Subroutine " Reset" in Asynchronous mode


O Subroutine " Command Reception" in Synchronous mode


O Subroutine " DOWN LOAD" in Synchronous mode


O Subroutine " Command error " in Synchronous mode

O Subroutine " SUM check error " in Synchronous mode

O Subroutine " RESET" in Synchronous mode

19.4 Example of Using the Program Loader Mode to Write to Flash Memory

This section provides examples of connection for writing to the flash memory connected to CS0.

Examples of connection for 1 MByte Flash

Flash memory must be located in an area not overlapping any internal area such as an internal resource or RAM before the entire flash memory can be accessed. This example assumes that one megabyte of flash memory connected to the CS0 area be accessed as " addresses 0x10 0000 to 0x1F FFFF". Note that the FR series has the reset vector and mode vector fixed at addresses 0xF FFFC and 0xF FFF8, respectively. That area must therefore be covered so that the program written to flash memory can be executed normally. When flash memory is one megabyte, any address signal higher in order than A20 is not connected to the flash memory. It can therefore be solved by setting the CS0 address range to 0x0 to 0x1F FFFF and accessing addresses 0x10 0000 to 0x1F FFFF and addresses 0x10 0000 to 0x1F FFFF as a mirror area.

Figure 19.4-1 "a Memory Access with Offset Addresses Added (1 MByte)" shows memory access with offset addresses added (one megabyte).

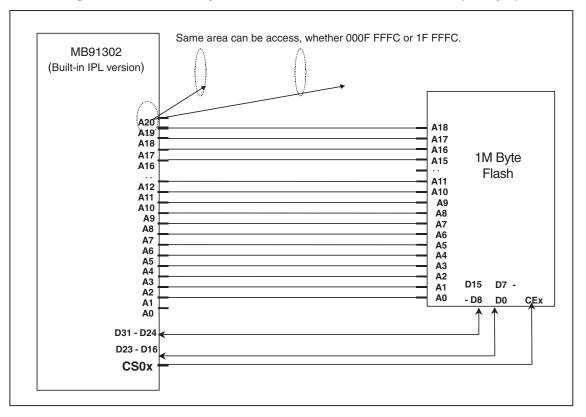
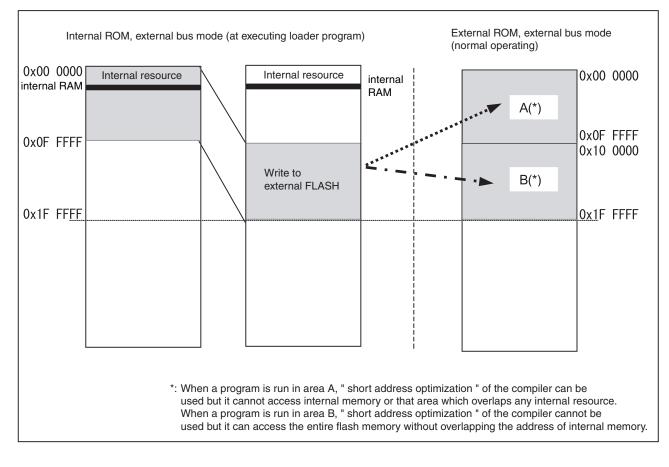



Figure 19.4-1 a Memory Access with Offset Addresses Added (1 MByte)

Note that, when a program written to flash memory is executed, the "external - vector activated, external - ROM/external - bus mode " is established. Therefore, the internal ROM area that the program loader stored in doesn't need any care.

Figure 19.4-2 "Memory Map for Each Mode" shows a memory map for each mode.

Figure 19.4-2 Memory Map for Each Mode

CHAPTER 19 Program Loader Mode (Supported only by the MB91302A (IPL integrated model))

CHAPTER 20 Real - time OS Embedded MB91302A - 010 User's Guide

This chapter describes the features of the MB91302A - 010 and its development methods.

- 20.1 "Introduction"
- 20.2 "Memory Map"
- 20.3 "Specifications for REALOS/FR Embedded in MB91302A-010"
- 20.4 "Section Allocation"
- 20.5 "Startup Routine"
- 20.6 "Initial Settings for SOFTUNE Workbench and REALOS/FR"
- 20.7 "Mode Pins, Mode Vectors, and Reset Vectors"
- 20.8 "Chip Evaluation System"

20.1 Introduction

This section explains the purpose of Chapter 20 and introduces related manuals.

Objective of This Section

The MB91302A - 010 is a microcontroller fabricated by embedding μ ITRON 3.0 compliant SOFTUNE REALOS/FR in the internal ROM of the MB91302A in the FR family of Fujitsu proprietary 32 - bit RISC microcontrollers.

This chapter describes the features of the MB91302A - 010 and its development methods. To develop programs for the MB91302A - 010, use SOFTUNE Workbench and REALOS/FR bundled with the development kit MB91302A-RDK01. You should therefore refer to the manuals for related development tools in addition to this chapter.

Embedded REALOS/FR Version

SOFTUNE REALOS/FR Rev600001 (SOFTUNE REALOS/FR Kernel V30L08)

Related Manuals

FR FAMILY CONFORMING $\mu ITRON3.0$ SPECIFICATIONS SOFTUNE REALOS/FR USER'S GUIDE

FR FAMILY CONFORMING $\mu ITRON3.0$ SPECIFICATIONS SOFTUNE REALOS/FR KERNEL MANUAL

FR/F²MC FAMILY CONFORMING TO $\mu 1 \text{TRON}$ SPECIFICATIONS SOFTUNE REALOS/FR/ 907/896 CONFIGURATOR MANUAL

FR-V/FR/F ^{2}MC FAMILY CONFORMING TO $\mu 1\text{TRON}$ SPECIFICATIONS SOFTUNE REALOS ANALYZER MANUAL

FR FAMILY ASSEMBLER MANUAL

SOFTUNE LINKAGE KIT MANUAL for V6

SOFTUNE Workbench OPERATION MANUAL for V6

SOFTUNE Workbench USER'S MANUAL

SOFTUNE Workbench COMMAND REFERENCE MANUAL for V6

Trademarks

TRON is an abbreviation of " The Real-time Operating System Nucleus ".

ITRON is an abbreviation of "Industrial TRON ".

µTRON is an abbreviation of " Micro Industrial TRON ".

SOFTUNE is a trademark of FUJITSU LIMITED.

REALOS is a trademark of FUJITSU LIMITED.

20.2 Memory Map

This section provides memory maps of the MB91302A - 010 and its evaluation chip MB91V301A.

Memory Map

The following are memory maps for the MB91302A - 010 and MB91V301A. The MB91302A - 010 contains RFEALOS/FR conforming to μ ITRON 3.0 in the internal 4 - KB ROM area located at addresses 0xFF000 to 0xFFFFF.

0x00000000 MB91302A-0010			MB91V301A
	I/O Direct addressing		I/O Direct addressing
0x00000400	-		
	I/O		I/O
0x00001000			
	I-RAM 4KB		I-RAM 4KB
0x00002000			
	Access prohibited		Access prohibited
		0x0003E000	
0x0003F000			
	RAM 4KB		RAM 16KB
0x00040000			
	External data area	0x00042000	
			Access prohibited
		0x00060000	
0x000E0000			External data area
	Access prohibited	0x000FE000	
0x000FF000			
	ROM 4KB		RAM 8KB
0x00100000	(embedded REALOS/FR)		
	External data area		External data area
0xFFFFFFF			

Figure 20.2-1 Memory Map of MB91302A-010 and MB91V301A

20.3 Specifications for REALOS/FR Embedded in MB91302A-010

The MB91302A-010 contains μ ITRON 3.0 compliant REALOS FR in the internal 4 KB ROM.

This section describes the system calls and objects supported by REALOS/FR embedded in internal 4KB ROM.

Outline of Embedded REALOS/FR

The size of the system stacks used by REALOS/FR is 64 kilobytes. Up to 32 cyclic handlers are supported. Up to 64 user tasks can be registered, for which priority levels from 1 to 32 can be assigned. Note that the alarm handler is not supported.

Table 20.3-1 Outline of Embedded REALOS/FI
--

System stack size	64 KB
Alarm handler	not supported
Number of cyclic handlers	0 to 32
User task priority level	1 to 32
Number of user tasks	1 to 64
Number of semaphores	0 to 32
Number of event flags	0 to 32
Number of mailboxes	0 to 32

Contained System Calls

The MB91302A - 010's internal ROM contains the following system calls. During actual development, register all of the following system calls using REALOS/FR's Configurator and be careful not to any other system call.

The evaluation chip MB91301A on the target board is used for debugging.

For how to register system calls using REALOS/FR Configurator, refer to the SOFTUNE REALOS/FR Configurator Manual.

Table 20.3-2 System Calls

Function	System Call
Task control	sta_tsk ext_tsk chg_pri
Synchronization with task	tslp_tsk wup_tsk
Synchronization / Communication	sig_sem wai_sem preg_sem
	set_flg clr_flg wai_flg pol_flg
	snd_msg rcv_msg prcv_msg
Time control	def_cyc ret_tmr
Interrupt control	ret_int

Objects

The MB91302A - 010's internal ROM contains the following objects.

The MB91302A - 010 supports event flags, semaphores, and mailboxes.

Table 20.3-3 objects

Objects Name	Number of Definitions
Event flag	0 to 32
Semaphore	0 to 32
Mailbox	0 to 32

O Event flag

The MB91302A - 010 supports up to 32 event flags.

The event flag definition tab of SOFTUNE REALOS/FR's Configurator is used to define event flags during program development. Even though the number of event flags to be actually used is less than 32, be sure to define 32 event flags including vacant definitions.

O Semaphore

The MB91302A - 010 supports up to 32 semaphores.

The semaphore definition tab of SOFTUNE REALOS/FR's Configurator is used to define semaphores during program development. Even though the number of semaphores to be actually used is less than 32, be sure to define 32 semaphores including vacant definitions.

O Mailbox

The MB91302A - 010 supports up to 32 mailboxes.

The mailbox definition tab of SOFTUNE REALOS/FR's Configurator is used to define mailboxes during program development. Even though the number of mailboxes to be actually used is less than 32, be sure to define 32 mailboxes including vacant definitions.

User Tasks

The MB91302A - 010 supports up to 64 user tasks.

The task definition tab of SOFTUNE REALOS/FR's Configurator is used to define user tasks during program development.

Table 20.3-4 User Tasks

Number of user tasks	1 to 64
----------------------	---------

Even though the number of user tasks to be actually used is less than 64, be sure to use the task definition tab of SOFTUNE REALOS/FR's Configurator to define 64 tasks including empty tasks. The initial state of empty user tasks which are not actually used must be DORMANT. Even for an empty user task not to be used, write a vacant source code and compile it along with the other tasks.

In actual programs, be careful not to issue a system call to these unused tasks.

void boo (void) {}

List 2.4 Example of Vacant Source Code for Unused Task

20.4 Section Allocation

This section describes section allocation.

Section Allocation

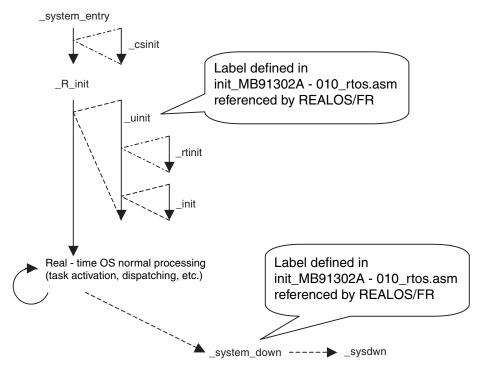
The MB91302A - 010 has the location address of the following section fixed. When developing an actual program, be sure to locate these sections at the following addresses. Sections are located through the project setting linker tab of SOFTUNE Workbench. sstack, knldata1, knldata2, DBGDAT2, mplmem, mplctl, and mpfmem are located in the RAM area; inidata, startcode, and R_eit are located in the ROM area.

The MB91302A - 010 does not support memory - pool related system calls but requires that memory - pool related sections of mplmem, mplctl, and mpfmem be located.

Table 20.4-1 Sections at Fixed Location Addresses

Section Name	Location Address	Function / Size	Remark
oscode	0x000FF000	Real-time OS / 0xFE4	Internal ROM
sstack	0X1000000	System stack / 0x10000	Allocated to
knldata1	0X10010000	Real-time OS data / 0x1A68	external RAM
knldata2	0X10011F00	Stack of idle tasks / 0x60	
DBGDATA2	0X10011FB0	Debugging data / 0x4	
mplmen	0X10011FD0	Data related to memory pools / 0x0	
mplctl	0X10011FE0	Data related to memory pools / 0x0	
mpfmen	0X10011FF0	Data related to memory pools / 0x0	
inidata	0x400FE000	Real-time OS data / 0xDCC	Allocated to
startcode	0x400FE400	Startup Routine / 0x544	external ROM
R_eit	0x400FFC00	Vector entry/0x400	

20.5 Startup Routine


This section describes the startup routine.

Startup Routine

For the MB91302A - 010, the startup routine init_MB91302A - 010_rtos.asm is always located in the startcode section. REALOS/FR stored in internal ROM directly references the _uinit and _system_down labels defined in init_MB91302A - 010_rtos.asm. <u>Therefore, be sure to use init_MB91302A - 010_rtos.asm provided by Fujitsu as the startup routine and do not modify the content</u>. Updating the contents shifts the addresses of these labels referenced by REALOS/FR, preventing normal operation.

The following explains the process flow of the subroutine coded in init_MB91302A - 010_rtos.asm. Of these, _csinit (bus setting/clock setting, etc.), _rtinit (reload timer setting), _init (other user initialization setting), and _sysdwn (routine used the system goes down) are subroutines called by the call instruction. These are created by the user to meet the system.

20.6 Initial Settings for SOFTUNE Workbench and REALOS/FR

SOFTUNE Workbench and REALOS/FR are used to develop programs. This section describes initial settings for tools using practical examples.

Program Example

The following sample program is discussed here to explain tool initialization.

0	User Tasks		
	\$ Number of tasks	50	
	\$Stack size	0x1000 (per task)	
	\$ Initial situation	task ID1 to 40	-> READY
		task ID41 to 50	-> DORMANT
	\$ Startup prioritized	task ID1 to 30	-> 1
		task ID31 to 50	-> 2
0	Semaphore		
	\$ Number of semaphores	20	
	\$Semaphore count	semaphore ID1 to 10	0 -> maximum value 15; Initial value 0
		semaphore ID11 to 20	-> maximum value 15; Initial value 0
0	Event flag		
	\$ Number of flags	32	
	\$ Initial pattern	semaphore ID1 to 16	-> 0x0000
		semaphore ID17 to 32	-> 0xFFFF
0	Mailbox		
	Number of boxes	10	
0	Interrupt vector		
	\$ Use reload timer 0 for the sys	stem clock.	-> Timer handler name _timer
0	Memory		
	\$ Code ROM	0x40000000 - 0x403	FFFFF (CS0 area x 16 bits)
	\$ Work RAM	0x10000000 - 0x10F	FFFF

REALOS/FR Configurator Setup

When you create a new project for REALOS/FR using SOFTUNE Workbench, the project appears with a member of " project - name.rcf " in the REALOS directory of the project window. When you double - click on this rcf file to start Configurator and perform the initial setting of REALOS/FR.

O System definition tab

Define the number of entries of handlers to be used by the system. When defining each number of entries, be sure to use a fixed value shown below.

	Item	Set value	Remarks
1	Number of cyclic handlers (C)	D'32	Be sure to set 32 even though the number of actual cyclic
			handlers is less than 32.
2	Number of alarm handlers (L)	D'0	Be sure to set 0 as it is not supported.
3	Exception handler entry name (E)	Blank	Be sure to set blank as it is not supported.
4	Task priority level (P)	D'32	Be sure to set 32 even when the task priority level is
			smaller than 32.
5	Setting the include file	Blank	Blank

O Memory definition tab

Set memory to be handled by the system.

Table 20.6-2 Setup with the Memory Definition Tab

	Item	Set value	Remarks
1	System stack size (S)	H'10000	Be sure to set 64 KB.
2	Kernel code address (C)	Blank	Blank as it is set by the linker of SOFTUNE Workbench.
3	Kernel code address (D)	Blank	Blank as it is set by the linker of SOFTUNE Workbench.

O System call definition tab

Register the system calls to be used. Register all of the following system calls available to the MB91302A - 010. Never register any other system call.

Table 20.6-3 Setup with the System Call Definition Tab

	Item	Set value	Remarks
1	Registered system calls (S)	set_tsk	Be sure to register all of these system calls and never
		ext_tsk	register any other system call.
		chg_pri	
		tslp_tsk	
		wup_tsk	
		sig_sem	
		wai_sem	
		preq_sem	
		set_flg	
		clr_flg	
		wai_flg	
		pol_flg	
		snd_msg	
		rcv_msg	
		prcv_msg	
		ret_int	
		def_cyc	
		ret_tmr	

O Task definition tab

Register user tasks.Start registration in order from ID number 1. Even though the number of user tasks for the actual system is less than 64, be sure to register 64 tasks. At this time, set the startup priority levels, stack, and initial state of unused user tasks using D'32 (minimum priority level), H'60 (minimum stack value acceptable), and DORMANT (idle state), respectively, not to start these empty user tasks.

	Item	Set value	Remarks
1	Name	Free	Set freely
2	Entry (T)	Free	The user task name can be set freely. The entry of a user task with boo(){} in C source code is _boo.
3	Startup priority level (P)	Free	Register unused user tasks with a priority level of 32.
4	Stack (S)	Free	H'60 is used to set unused user tasks.
5	Initial situation (A)	Free	Set unused user tasks first to DORMANT.
6	Start code (C)	Free	Set freely
7	ID number (I)	D'1 to 64	Be sure to set 1 to 64 in ascending order.
8	Extensive information (O)	Free	Set freely
9	Time out (M)	Use	Set "Use"

Table 20.6-4 Setup with the Advanced Task Definition Window

Even for an unused user task, write a vacant source code in C source code and compile it along with other user tasks to be used for the system.

void boo(void){}

List 5.2.4 Vacant C Source Code for Unused Task

This development example assumes the following with regard to user tasks.

\$ Number of tasks	50	
\$Stack size	0x1000 (per task)	
\$ Initial situation	task ID1 to 40	-> READY
	task ID41 to 50	-> DORMANT
\$ Startup prioritized	task ID1 to 30	-> 1
	task ID31 to 50	-> 2

This development example requires the following settings with the task definition tab of Configurator.

task ID1 to 30	Stack (S) Initial situation (P) Startup prioritized (A)	->	H'1000 READY D'1	
task ID31 to 40	Stack (S) Initial situation (P) Startup prioritized (A)	->	H'1000 READY D'2	
task ID41 to 50	Stack (S) Initial situation (P) Startup prioritized (A)	-> ->	H'1000 DORMANT D'2	
task ID51 to 64	Stack (S) Initial situation (P) Startup prioritized (A)	->	H'60 (minimum stack) DORMANT (idle state) D'2 (minimum priority level)	} Define blank task

O Semaphore Definition Tab

Register the semaphores to be used by the system. Register all of ID numbers 1 through 32 in ascending order.

Even though the number of semaphores to be actually used is less than 32, be sure to register 32 semaphores.

Table 20.6-5 Setup with the Semaphore Definition Tab

	Item	Set value	Remarks
1	Name (E)	Free	Set freely
2	Initial count (C)	Free	Set freely
3	Maximum count (M)	Free	Set freely
4	ID number (D)	D'1 to 32	Be sure to set D'1 through D'32 in ascending order.
5	Extensive information (O)	Free	Set freely

This development example assumes the following with regard to semaphores.

\$ Number of semaphores	20	
\$ Semaphore count	Semaphore ID1 to 10	-> Max. 15 / Initial value 0
	SemaphoreID11 to 20	-> Max. 20 / Initial value 0

This development example requires the following settings with the semaphore definition tab of Configurator.

Semaphore ID1 to 10	Initial count (C) Maximum count (M)	-> ->	D'0 D'15	
Semaphore ID11 to 20	Initial count (C) Maximum count (M)	-> -> ->	D'0 D'20	
Semaphore ID21 to 32	Initial count (C) Maximum count (M)	-> ->	D'0 D'8	} Define blank task

O Event Flag Definition Tab

Register the event flags to be used by the system. Register all of ID numbers 1 through 32 in ascending order.

Even though the number of event flags to be actually used is less than 32, be sure to register 32 event flags.

Table 20.6-6 Setup with the Event Flag Definition Tab

	Item	Set value	Remarks
1	Name (E)	Free	Set freely
2	Initial Pattern (P)	Free	Set freely
3	ID number (D)	D'1 to 32	Be sure to set D'1 through D'32 in ascending order.
4	Extensive information (O)	Free	Set freely

This development example assumes the following with regard to event flags.

\$ Number of event flags	32	
\$ Initial Pattern	Flag ID1 to 16	-> 0x0000
	Flag ID17 to 32	-> 0xFFFF

For this development example, the event flag definition tab of Configurator appears as shown

below.

Flag ID1 to 16	Initial Pattern (P)	->	H'0000
Flag ID17 to 32	Initial Pattern (P)	->	H'FFFF

• Mailbox definition tab

Register the mailboxes to be used by the system. Register all of ID numbers 1 through 32 in ascending order.

Even though the number of mailboxes to be actually used is less than 32, be sure to register 32 mailboxes.

Table 20.6-7 Setup with the Mailbox Definition Tab

	Item	Set value	Remarks
1	Name (E)	Free	Set freely
2	ID number (D)	D'1 to 32	Be sure to set D'1 through D'32 in ascending order.
3	Extensive information (O)	Free	Set freely

O Variable - length memory pool and fixed - length memory pool definition tabs

REALOS/FR embedded in internal ROM of the MB91302A - 010 does not support these variable - length or fixed - length memory pools. Leave these definition tabs blank without making any setting.

• Vector definition tab

Register interrupt handlers. To generate a system clock signal using one of internal reload timers 0 to 2, register the interrupt handler for the reload timer to any of interrupt numbers D'24 to D'26. D'1 registers the mode vector. For the MB91302A - 010, either 0x06000000 (external ROM area 32 bit mode with the MB91302A - 010's internal ROM enabled), 0x05000000 (external ROM area 16 bit mode with the MB91302A - 010's internal ROM enabled) or 0x04000000 (external ROM area 8 bit mode with the MB91302A - 010's internal ROM enabled) is used for the mode vector value according to the hardware specifications of the target. For details on the mode vector, refer to the hardware manual for the MB91302A - 010.

Number	Entry (E)	Remarks
D'0	_system_entry	Fix reset vector name to the left
D'1	0x06000000 or 0x05000000 or 0x04000000Register one of the three mode vectors to the left matches the hardware specifications of the target	
D'2 to D'23 Free		Set freely
D'24 to D'26	Timer handler name	To generate a system clock signal using one of internal reload timers 0 to 2, register the timer handler for the reload timer to any of interrupt numbers D'24 to D'26.
D'27 to D'255	Free	Set freely

Table 20.6-8	Setup wi	th vector	definition tab
--------------	----------	-----------	----------------

This sample program uses reload timer 1 to generate a system clock signal. As the timer handler name is _timer, D'25 (interrupt number for reload timer 1) is set to _time.

As CS0's hardware consists of x16 - bit ROM, the mode vector is 0x05000000. Therefore, set D'1 (mode vector) to H'0500000.

O Debug setting tab

The MB91302A - 010 has no unique setting. (Default setting)

Note:

At the default setting, the REALOS analyzer log function is restricted

For more information, refer to the manual for FR-V/FR/F 2 MC FAMILY CONFORMING TO μ TRON SPECIFICATIONS SOFTUNE REALOS ANALYZER MANUAL

O Summary of Configurator setup

Table 20.6-9 lists those items under individual definition tabs of Configurator which must be set to a fixed value each.

Item	Item Description	Fixed set value
System definition	Number of cyclic handlers	Number of entries fixed at 32
	Number of alarm handlers	D'0
	Exception handler entry name	Blank
	Task priority level	Fixed at D'32
	Setting the include file	Blank
Memory definition	System stack size	Fixed at 64KB
-	Kernel code address	Blank
	Kernel data address	Blank
System call definition		Refer to Section 5.2.4
Task definition	Number of entries	Number of entries fixed at 64 (including empty tasks)
	Name	Set freely
	Entry	Set freely
	Startup priority level	Set freely
	Stack	Set freely
	Initial situation	Set freely
	Start code	Set freely
	ID number	Be sure to set 1 to 64 in ascending order.
	Extensive information	Set freely
	Time out	Time - out allotted, fixed
	Common stack	Set freely
Semaphore definition	Number of entries	Number of entries fixed at 32 (including empty
		semaphores)
	Name	Set freely
	Initial count	Set freely
	Maximum count	Set freely
	ID number	Be sure to set D'1 through D'32 in ascending order.
	Extensive information	Set freely
Event flag definition	Number of entries	Number of entries fixed at 32 (including empty event flags)
	Name	Set freely
	Initial Pattern	Set freely
	ID number	Be sure to set D'1 through D'32 in ascending order.
	Extensive information	Set freely
Mailbox definition	Number of entries	Number of entries fixed at 32 (including empty mailboxes)
	Name	Set freely
	ID number	Be sure to set D'1 through D'32 in ascending order.
	Extensive information	Set freely
Variable - length memory pool		Not supported
Fixed - length memory pool		Not supported
Vector definition	Reset vector name	Fix reset vector name to _system_entry
	Number	Set D'1 through D'255 in ascending order.
	Entry	Set freely
Debug setting		Fix default setting

Program Allocation

The following describes program location.

O Section

At least the following sections exist by default, including REALOS/FR.

Table 20.6-10 Section

Section name	Size (byte)	Contents	Allocation top address	Memory
Data	-	Data in C source code	Allocate freely	RAM
INIT	-	Initial data in C source code	Allocate freely	RAM
oscode	0xFE4	Real time OS	Fixed at 0x000FF000	Internal ROM
sstack	0x10000	System stack	Fixed at 0x10000000	RAM
knldata1	0x1A68	Data of real time OS	Fixed at 0x10010000	RAM
knldata2	0x60	Stack of idle tasks	Fixed at 0x10011F00	RAM
DBGDATA2	0x4	Debug related sections	Fixed at 0x10011FB0	RAM
mplmem	0x0	Memory pool related sections	Fixed at 0x10011FD0	RAM
mplctl	0x0	Memory pool related sections	Fixed at 0x10011FE0	RAM
mpfmem	0x0	Memory pool related sections	Fixed at 0x10011FF0	RAM
R_stk001 to 040	-	User stack	Allocate freely	RAM
inidata	0xDCC	Initial data of real time OS	Fixed at 0x400FE000	ROM
startcode	0x544	Start up	Fixed at 0x400FF400	ROM
CODE	-	C source code	Allocate freely	ROM
@INIT	-	Initial data of C source code	Allocate freely	ROM
CONST	-	Initial data of C source code	Allocate freely	ROM
uinitcode (NOTE)	-	_csinit _init _rtinit _sysdwn	Allocate freely	ROM
R_eit	0x400	Interrupt vector	Fixed at 0x400FFC00	ROM

Note: Section name uinitcode is the section name of _csinit _init _rtinit _sysdwn.

This can be freely named with the section pseudo - instruction.

O Linker Allocation Option

Given below are linker options and an address map for "Sample Programs". For details on the options for the linker, refer to the manual for SOFTUNE Workbench.

Stacks (0x10000 bytes each) of 50 user tasks are located at R_stk0001 to R_stk0032 and 14 empty tasks are allocated at 0x60 - byte user stack each between R_stk0033 and R_stk0040.

This example assumes that " CODE + @INIT + CONST " can be stored between 0x40000000 and 0x400FDFFF.

Allocation option of the linker	Address	Address map	
Allocation option of the linker	0	MB91302A-010	
-sc oscod e=0x00 0FF000	FF000	Internal-4KB ROM	
-sc sstack=0x10000000	1000000	External RAM	
-sc knldata1=0x10010000			
-sc knldata2=0x10011F00			
-sc DBGDAT2=0x10011FB0			
-sc mplmem=0x10011FD0			
-sc mplctl=0x10011FE0			
-sc mpfmem=0x10011FF0			
-sc R_stk0001+R_stk0002+,,,+R_stk0032=0x10012000			
-sc R_stk0033+R_stk0034+,,,+R_stk0040=0x10044000			
-sc DATA+INIT+STACK=10044540			
	40000000	External ROM	
-sc CODE+@INIT+CONST+tuinitcode=0x4000 0000 -sc inidata=0x400FE000	4000000		
-sc startcode=0x400FF 400			
-sc R_eit=0x400FFC00	400FFC00	Interrupt vector 1KB	
	FFFFFFF		

Figure 20.6-1 Linker Option and Address Map

20.7 Mode Pins, Mode Vectors, and Reset Vectors

This section describes the mode pins, mode vectors, and reset vectors of the MB91302A - 010. For more information, see Sections 3.11.3 " Reset Sequence " and 3.14 " Operation Modes " as well.

Mode Pin

The MB91302A - 010 can fetch the mode vector that determines the operation mode of the microcontroller from address 0x000FFFF8 and the reset vector (startup routine's start address) from address 0x000FFFFC after initialization by a reset.

Since addresses 0x000FFFF8 and 0x000FFFFC are located in the internal ROM containing REALOS/FR, however, the mode and reset vectors fetched after the release by a reset are taken from external ROM to the microcontroller. Therefore, set the mode pin on the MB91302A - 010 to the external vector fetch mode.

Table 20.7-1 Setting of Mode Pins

Mode pin	Setting value		
MD2-0	"LLH" fixed (external vector fetch mode)		

Mode Vector

The MB91302A - 010 fetches the mode vector that determines the operation mode of the microcontroller from address 0x400FFFF8 after being released from a reset.(The address actually output by the MB91302A - 010 is 0x000FFFF8.)

For the MB91302A - 010, set the internal - ROM/external - bus mode to enable the internal ROM containing REALOS/FR.(Mode data for internal ROM/external bus mode: 0b000001xx)

The mode vector fetched after a reset is canceled has the bit for setting the internal - ROM/ external - bus mode and the bit for setting the bit width of the external CS0 area as well. Set the bit width of this CS0 area to the bit width of ROM mounted on the target board.

The mode vector can be set with handler number D'1 by using the vector definition tab of REALOS/FR's Configurator.

Target CS0's ROM bit width	Set value (hex)	Setting value for the vector definition tab
8 bit	04	H'0400000
16 bit	05	H'0500000
32 bit	06	H'0600000

Table 20.7-2 Setting value of mode vector

Reset Vectors

The MB91302A - 010 fetches the reset vector from address 0x000FFFFC after being released from a reset.

The reset vector is embedded in code automatically by the linker of SOFTUNE Workbench.

Mode Data and Reset Vector Location Addresses

The MB91302A - 010 interrupt vector is sized one kilobyte and located in the R_eit section.

Use the linker of SOFTUNE Workbench to locate the R_eit section at addresses 0x400FFC00 to 0x400FFFFF. At this time, both of the mode vector and reset vector are located within R_eit by the linker.

Vector name	Location addresses (hex)
Mode vector	0x400FFFF8
Reset Vector	0x400FFFFC
Note R_eit	0x400FFC00 to 0x400FFFFF

Table 20.7-3 Mode Vector and Reset Vector Location Addresses

Mode Data and Reset Vector Access Addresses

The MB91302A - 010 allows linear access to 32 - bit address space but the address signals actually available are A23 to A0, where CS signals substitute for A31 to A24 to decode these addresses. The whole address space is used as CS0 until each CS area is allocated by the startup routine after initialization by a reset.

By setting addresses 0x400FFFF8 and 0x400FFFFC as CS0, therefore, the MB91302A - 010 can fetch mode data and a reset vector located at addresses 0x400FFFF8 and 0x400FFFFC as data at addresses 0x000FFFF8 and 0x000FFFFC after initialization by a reset.

Table 20.7-4 Mode Data and Reset Vector Access Addresses

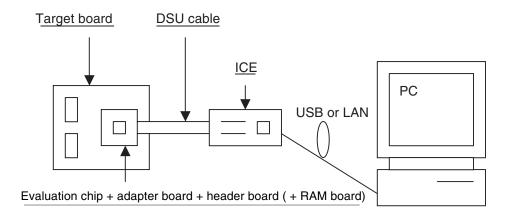
	After a reset is canceled	At CS area is set by register
Mode data	0x000FFFF8	0x400FFFF8
Reset vector	0x000FFFFC	0x400FFFFC

■ Fetching Mode Data and Reset Vectors after the Device is Released from a Reset

The MB91302A - 010 fetches the mode data and reset vector from addresses 0x000FFFF8 and 0x000FFFFC after being released from the reset. Depending on the next operation of the MB91302A - 010, these items of data located at addresses 0x400FFFF8 and 0x400FFFFC in the R_eit section are fetched when a reset is canceled.

	Operation	Remarks
1	Release from a Reset The entire 32 - bit address space becomes CS0 upon initialization by a reset.	The CS0 signal is asserted upon any external access.
2	The MD2 to MD0 mode pins become "LLH" which is fixed on the target board after a reset is canceled. Fetch a mode vector from external address 0x000FFFF8 at the timing 1). CS0 is asserted at this time.	For the MB91302A - 010, set the MD2 to MD0 mode pins to " LLH ". (External vector mode) For the mode vector, set 0x04, 0x05, or 0x06 depending on the CS0 bus width.
3	The lower two bits of the mode vector is used to set the bit width of external CS0 area ROM. According to this, the reset vector is fetched from external address 0x000FFFFC. CS0 is asserted at this time.	Set CS0 to the external ROM that stores the R_eit area (addresses 0x400FFC00 to 0x400FFFF).
4	Load the reset vector fetched at 3) to the internal PC.	
5	Internal 4 - KB ROM is enabled according to the mode vector fetched at 2) after completion of 4).	
6	The program starts running. Each CS area is according to the bus width/ area set by _csinit called from the startup routine.	All address areas are accessed as CS0 until bus setting by _csinit. The startup routine must therefore be located always in CS0.

■ An Example of Connection of External Memory


Given below is an example of connection of the MB91302A - 010 to external memory. External memory on the target must include ROM (addresses 0x400FE000 to 0x400FFFFF are mandatory as this area is referenced by the real - time OS) for storing code and RAM (starting at address 0x10000000) for storing work data. Be sure to set ROM to CS0.

The MB91302A - 010 " outputs the CS0 signal in response to access to any address after initialization by a reset " and " has the address upper bits (A31 to A24) decoded by CS signals". When released from the reset, therefore, the MB91302A - 010 can fetch mode vector (at address 0x000FFFF8) and reset vector (at address 0x000FFFFC) from actual addresses 0x400FFFF8 and 0x400FFFFC of external ROM.

20.8 Chip Evaluation System

This section describes a sample configuration of the chip evaluation system.

■ Configuration Example Target board + evaluation chip + ICE

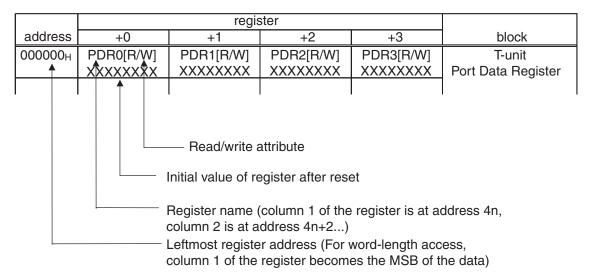
Name	Туре	Remark	
ICE	MB2198-01	Connect with PC, USB, or LAN.	
DSU cable	MB2198-10	Cable connecting the ICE with the adapter board	
Evaluation chip	MB91V301A	Bundled with the development kit MB91V301A - RDK01.	
Adapter board	MB2198-100	Used together with MB2198-101	
Header board	MB2198-101	Used together with MB2198-100 Belongings: NQPACK144SE and HQPACK144SE	
RAM board	MB2198-90	Not required if the target board has emulation memory.	

In addition, the following development tools (software and the development kit) are required for development.

- FR family SOFTUNE professional pack (V6 supported) => Integrated development environment (Workbench, compiler, etc.)
- MB91V301A RDK01 => Evaluation chip bundled with development software

APPENDIX

This appendix consists of the following parts: I/O map, interrupt vector, pin states in the CPU state, notes on using a little endian area, and instruction lists. The appendix contains detailed information that could not be included in the main text and reference material for programming.


APPENDIX A "I/O MAP" APPENDIX B "INTERRUPT VECTOR" APPENDIX C "PIN STATES IN EACH CPU STATE" APPENDIX D "NOTES ON USING A LITTLE ENDIAN AREA" APPENDIX E "INSTRUCTION LISTS"

APPENDIX A I/O MAP

Table A-1 "I/O Map" shows the correspondence between the memory space area and the peripheral resource registers.

I/O Map

[Reading the table]

Note:

The initial values of bits in a register are indicated as follows:

- 1: Initial value 1
- 0: Initial value 0
- X: Initial value X

-: A physical register does not exist at the location.

Table A-1 I/O Map

	register			black		
address	+0	+1	+2	+3	block	
000000 _H	PDR0 [R/W] B XXXXXXXX	PDR1 [R/W] B XXXXXXXX	PDR2 [R/W] B XXXXXXXX	-		
000004 _H	_	_	PDR6 [R/W] XXXXXXXX	-	T-unit	
000008 _H	PDR8 [R/W] B XXXXXXXX	PDR9 [R/W] B -XXXXXXX	PDRA [R/W] B XXXXXXXX	PDRB [R/W] B XXXXXXXX	Port Data Register	
00000C _H			_			
000010 _H	PDRG [R/W] B XXXXXXXX	PDRH [R/W] B XXX	-	PDRJ [R/W] B XXXXXXXX	R-bus Port Data Register	
000014 _H to 00003C _H			_		Not found	
000040 _H	EIRR [R/W] B,H,W 00000000	ENIR [R/W] B,H,W 00000000	ELVR [R/W] B,H,W 00000000		Ext int	
000044 _H	DICR [R/W] B,H,W 0	HRCL [R/W] B,H,W 011111	_		DLYI/I-unit	
000048 _H	TMRLR0 XXXXXXXX	[W] H,W XXXXXXXX	TMR0 [R] H,W XXXXXXXX XXXXXXX		Reload Timer 0	
00004C _H	-	-	TMCSR [R/W] B,H,W XX0000 00000000		neloau Timer o	
000050 _H	TMRLR1 XXXXXXXX	[W] H,W XXXXXXXX		[R] H,W XXXXXXXX	Reload Timer 1	
000054 _H	-	-	TMCSR1 [R/W] B,H,W XX0000 00000000		neloau filmer f	
000058 _H	TMRLR2 XXXXXXXX	[W] H,W XXXXXXXX	TMR2 [R] H,W XXXXXXXX XXXXXXX		Reload Timer 2	
00005C _H	-	-	TMCSR2 [R/W] B,H,W XX0000 00000000			
000060 _H	SSR0 [R/W] B,H,W 00001000	SIDR0 [R] SODR0 [W] B, H,W XXXXXXXX	SCR0 [R/W] B,H,W 00000100	SMR0 [R/W] B,H,W 000-0-	UART0	
000064 _H	(UTIMR0	[R] H,W [W] H,W) 00000000	DRCL0 [W] B	UTIMC0 [R/W] B 000001	U-TIMER 0	

oddrooo	register				blook
address	+0	+1	+2	+3	block
000068 _H	SSR1 [R/W] B,H,W 00001000	SIDR1 [R] SODR1 [W] B,H,W XXXXXXXX	SCR1 [R/W] B,H,W 00000100	SMR1 [R/W] B,H,W 000-0-	UART1
00006C _H	UTIM1 (UTIMR1 00000000	[W] H,W)	DRCL1 [W] B 	UTIMC1 [R/W] B 000001	U-TIMER 1
000070 _H	SSR2 [R/W] B,H,W 00001000	SIDR2 [R] SODR2 [W] B,H,W XXXXXXXX	SCR2 [R/W] B,H,W 00000100	SMR2 [R/W] B,H,W 000-0-	UART2
000074 _H	UTIM2 [R] H,W (UTIMR2 [W] H,W) 00000000 00000000		DRCL2 [W] B 	UTIMC2 [R/W] B 000001	U-TIMER 2
000078 _H	ADCR [R] B,H,W 000000XX XXXXXXXX			W] B,H,W 00000000	A/D Converter sequential comparison
00007C _H	ADCR0 [R] B,H,W XXXXXXXX	ADCR1 [R] B,H,W XXXXXXXX	ADCR2 [R] B,H,W XXXXXXXX	ADCR3 [R] B,H,W XXXXXXXX	A/D cnverter sequential comparison
000080 _H to 000090 _H			_		Reserved
000094 _H	IBCR0 [R/W] B,W,H 00000000	IBSR0 [R] B,W,H 00000000	ITBA0 [R/W] B,W,H 00000000 00000000		
000098 _H	ITMK0 [R/W] B,W,H 00111111 11111111 000000000 ISBA0 [R/W] B,W,H 01111111 000000000		I ² C interface 0*		
00009C _H	_	IDAR0 [R/W] B,H,W 00000000	ICCR0 [R/W] B,W,H 00011111	IDBL0 [R/W] B,W,H 00000000	
0000A0 _H	-				Reserved*
0000A4 _H	_			Reserved*	
0000A8 _H to 0000B0 _H	-			Not found	

Table A-1	I/O Map	(Continued)
-----------	---------	-------------

oddroop	register				block
address	+0	+1	+2	+3	DIOCK
0000B4 _H	IBCR0 [R/W] B,H,W 00000000	IBCR1 [R/W] B,H,W 00000000	ITBA1 [R/W] B,H,W 00000000 00000000		
0000B8 _H	ITMK1 [R/W] B,H,W 00111111 11111111		ISMK1 [R/W] B,H,W 00011111	ISBA1 [R/W] B,H,W 00000000	I ² C interface1*
0000BC _H	-	IDAR1 [R/W] B,H,W 00000000	ICCR1 [R/W] B,H,W 00011111	IDBL1 [R/W] B,H,W 00000000	
0000C0 _H	-	-	-	-	
0000C4 _H	-	-	-	-	Description
0000C8 _H to 0000D0 _H	-	-	-	-	Reserved *
0000D4 _H		8/W] H,W 00000000	- TCCS [R/W] - B,H,W 00000000		16-bit free-run timer *
0000D8 _H		/W] H,W _XXXXXXXX	IPCP0 [R/W] H,W XXXXXXX_XXXXXXX		
0000DC _H	IPCP1 [F XXXXXXXX	3/W] H,W _XXXXXXXX			16-bit ICU *
0000E0 _H	-	ICS23 [R/W] B,H,W 00000000	-	ICS01 [R/W] B,H,W 00000000	
0000E4 _H to 000114 _H	I 			Unused	
000118 _H	GCN10 [R/W] H 00110010_00010000		-	GCN20 [R/W] B 00000000	PPG timer
00011C _H			-		Unused
000120 _H	PTMR0 [R] H 11111111 1111111 XX		PCSR0 XXXXXXXX	[W] H,W _XXXXXXXX	PPG0
000124 _H	PDUT0 [W] H,W XXXXXXXX_XXXXXXX		PCNH0 [R/W] B 00000000	PCNL0 [R/W] B 000000X0	11 60
000128 _H	PTMR 11111111		PCSR1 [W] H,W XXXXXXXX_XXXXXXX		PPG1
00012C _H	PDUT1 XXXXXXXX	[W] H,W _XXXXXXXX	PCNH1 [R/W] B 00000000	N] B PCNL1 [R/W] B	

APPENDIX

	block			
+0	+1	+2	+3	DIOCK
				PPG2
		PCNH2 [R/W] B 00000000	PCNL2 [R/W] B 000000X0	PPG2
				5500
		PCNH3 [R/W] B 00000000	PCNL3 [R/W] B 000000X0	PPG3
		-		Unused
0000			(XXX	
0000			xxx	
0000			(XXX	DMAC
0000			xxx	
0000			(XXX	
0000			xxx	
0000			(XXX	
0000			xxx	DMAC
0000			xxx	
0000			xxx	
		_		Reserved
0XX00			xxxx	DMAC
		_		Reserved
	PTMR2 11111111 PDUT2 [XXXXXXXX PTMR3 11111111 PDUT3 [XXXXXXXX 00000 00000 00000 00000 00000 00000 0000	+0 +1 PTMR2 [R] H 11111111 PDUT2 [W] H,W XXXXXXXX _XXXXXX PTMR3 [R] H 11111111 PDUT3 [W] H,W XXXXXXX _XXXXXXX DMACA0 0000000000000000000000000000000000	PTMR2 [R] H PCSR2 11111111111111111 XXXXXXXX PDUT2 [W] H,W PCNH2 [R/W] B XXXXXXX_XXX_XXXXXX 00000000 PTMR3 [R] H PCSR3 111111111111111111 XXXXXXXXX PDUT3 [W] H,W PCNH3 [R/W] B XXXXXXXX_XXX_XXXXX 00000000 PDUT3 [W] H,W PCNH3 [R/W] B XXXXXXXX_XXXXXXXXXX 00000000 DMACA0 [R/W] B,H,W*1 00000000 00000000 00000XXXX XXXXXXXXXXXXXXXXXXX	+0 +1 +2 +3 PTMR2 [R] H PCSR2 [W] H,W XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Table A-1 I/O Map (Continued)

		block			
address	+0	+1	+2	+3	DIOCK
000304 _H		_		ISIZE [R/W] B,H,W 10	Instruction Cache
000308 _H to 0003E0 _H			_		Reserved
0003E4 _H		_		ICHRC [R/W] B,H,W 0-000000	Instruction Cache
0003E8 _H to 0003EC _H		Reserved			
0003F0 _H	xxxx		[W] W XXXXXXXX XXX	xxxx	
0003F4 _H	xxxx		[R/W] W XXXXXXXX XXXX	xxxx	Bit Search Module
0003F8 _H	xxxx		[W] W XXXXXXXX XXX	xxxx	Dit Search Module
0003FC _H	xxxx		[R] W XXXXXXXX XXX	xxxx	
000400 _H	DDRG [R/W] B 00000000	DDRH [R/W] B 00	-	DDRJ [R/W] B 00000000	R-bus Port Direction Register
000404 _H to 00040C _H			_		Reserved
000410 _H	PFRG [R/W] B 00	PFRH [R/W] B 0-	-	PFRJ [R/W] B 00-00-	R-bus Port Function Register
000414 _H to 00041C _H					Reserved
000420 _H	PCRG [R/W] B* 00000000	PCR1 [R/W] B 000	-	PCRJ [R/W] B * 00000000	R-bus pull-up resistance control Register
000424 _H 00043C _H			_	·	Reserved

Table A-1 I/C	O Map (Continued)	
---------------	-------------------	--

	register				black
address	+0	+1	+2	+3	block
000440 _H	ICR00 [R/W] B,H,W 11111	ICR01 [R/W] B,H,W 11111	ICR02 [R/W] B,H,W 11111	ICR03 [R/W] B,H,W 11111	
000444 _H	ICR04 [R/W] B,H,W 11111	ICR05 [R/W] B,H,W 11111	ICR06 [R/W] B,H,W 11111	ICR07 [R/W] B,H,W 11111	
000448 _H	ICR08 [R/W] B,H,W 11111	ICR09 [R/W] B,H,W 11111	ICR10 [R/W] B,H,W 11111	ICR11 [R/W] B,H,W 11111	
00044C _H	ICR12 [R/W] B,H,W 11111	ICR13 [R/W] B,H,W 11111	ICR14 [R/W] B,H,W 11111	ICR15 [R/W] B,H,W 11111	Interrupt Controller
000450 _H	ICR16 [R/W] B,H,W 11111	ICR17 [R/W] B,H,W 11111	ICR18 [R/W] B,H,W 11111	ICR19 [R/W] B,H,W 11111	Interrupt Controller
000454 _H	ICR20 [R/W] B,H,W 11111	ICR21[R/W] B,H,W 11111	ICR22 [R/W] B,H,W 11111	ICR23 [R/W] B,H,W 11111	
000458 _H	ICR24 [R/W] B,H,W 11111	ICR25 [R/W] B,H,W 11111	ICR26 [R/W] B,H,W 11111	ICR27 [R/W] B,H,W 11111	
00045C _H	ICR28 [R/W] B,H,W 11111	ICR29 [R/W] B,H,W 11111	ICR30 [R/W] B,H,W 11111	ICR31 [R/W] B,H,W 11111	
000460 _H	ICR32 [R/W] B,H,W 11111	ICR33 [R/W] B,H,W 11111	ICR34 [R/W] B,H,W 11111	ICR35 [R/W] B,H,W 11111	
000464 _H	ICR36 [R/W] B,H,W 11111	ICR37 [R/W] B,H,W 11111	ICR38 [R/W] B,H,W 11111	ICR39 [R/W] B,H,W 11111	Interrupt Controller
000468 _H	ICR40 [R/W] B,H,W 11111	ICR41 [R/W] B,H,W 11111	ICR42 [R/W] B,H,W 11111	ICR43 [R/W] B,H,W 11111	Interrupt Controller
00046C _H	ICR44 [R/W] B,H,W 11111	ICR45 [R/W] B,H,W 11111	ICR46 [R/W] B,H,W 11111	ICR47 [R/W] B,H,W 11111	
000470 _H 00047C _H		-	_		Interrupt Controller

address		block			
auuress	+0	+1	+2	+3	DIOCK
000480 _H	RSRR [R/W] B,H,W 10000000 (INITX) -0-XX-00 (INIT) XXXX00 (RST)	STCR [R/W] B,H,W 00110011 (INITX) 00111111 (HSTX) 0011XX11 (INIT) 00X1XXXX (RST)	TBCR [R/W] B,H,W 00XXXX00 (INIT) 00XXXXXX (RST)	CTBR [W] B,H,W XXXXXXXX (INIT) XXXXXXXX (RST)	Clock Control unit
000484 _H	CLKR [R/W] B,H,W 00000000 (INIT) XXXXXXXX (RST)	WPR [W] B,H,W XXXXXXXX (INIT) XXXXXXXX (RST)	DIVR0 [R/W] B,H,W 00000011 (INIT) XXXXXXXX (RST)	DIVR1 [R/W] B,H,W 00000000 (INIT) XXXXXXXX (RST)	
000488 _H					Reserved
0005FC _H			_		Heserved
000600 _H	DDR0 [R/W] B 00000000	DDR1 [R/W] B 00000000	DDR2 [R/W] B B00000000	_	
000604 _H	_	_	DDR6 [R/W] B 00000000	_	T-unit Data Direction
000608 _H	DDR8 [R/W] B 00000000	DDR9 [R/W] B -0000000	DDRA [R/W] B 00000000	DDRB [R/W] B 00000000	Register
00060C _H			_		
000610 _H			_		
000614 _H	_	-	PFR6 [R/W] B 11111111	PFR7 [R/W] B 1	
000618 _H	PFR8 [R/W] B 111-0	PFR9 [R/W] B -0000111	PFRA1 [R/W] B 11111111	PFRB1 [R/W] B 00000000	T-unit Port Function
00061C _H	PFRB2 [R/W] 00	_	PFRA2 [R/W] B 0	_	Register
000620 _H			_	1	
000624 _H			_		
000628 _H					Reserved
00063F _H					i lesel veu

Table A-1 I/O Map (Continued)

APPENDIX

oddrooo	register				block
address	+0 +1		+2 +3		block
000640 _H		ASR0 [R/W] H,W 00000000 00000000		ACR0 [R/W] H,W 1111XX00 00000000	
000644 _H	ASR1 [R/W] H,W XXXXXXXX XXXXXXX		ACR1 [R XXXXXXXX	/W] B,H,W XXXXXXXX	
000648 _H	ASR2 [I XXXXXXXX	R/W] H,W XXXXXXXX	ACR2 [R XXXXXXXX	• · ·	
00064C _H	ASR3 [I XXXXXXXX	R/W] H,W XXXXXXXX	ACR3 [R XXXXXXXX	• · ·	T-unit
000650 _H	ASR4 [I XXXXXXXX	R/W] H,W XXXXXXXX	ACR4 [R XXXXXXXX	-	i i-unit
000654 _H	ASR5 [I XXXXXXXX	R/W] H,W XXXXXXXX	ACR5 [R XXXXXXXX	-	
000658 _H	ASR6 [I XXXXXXXX	R/W] H,W XXXXXXXX	ACR6 [R XXXXXXXX		
00065C _H		ASR7 [R/W] H,W XXXXXXXX XXXXXXXX		/W] B,H,W XXXXXXXX	
000660 _H	_	8/W] B,H,W 11111111 (*)	AWR1 [R/W] B,H,W XXXXXXXX XXXXXXX		
000664 _H	-	/W] B,H,W XXXXXXXX	AWR3 [R/W] B,H,W XXXXXXXX XXXXXXX		
000668 _H		/W] B,H,W XXXXXXXX	AWR5 [R/W] B,H,W XXXXXXXX XXXXXXX		
00066C _H		8/W] B,H,W XXXXXXXX	AWR7 [F XXXXXXXX		
000670 _H	MCRA [R/W] B,H,W XXXXXXXX	MCRB [R/W] B,H,W XXXXXXXX	-	-	
000674 _H			_		T-unit
000678 _H	IOWR0 [R/W] B,H,W XXXXXXXX	IOWR1 [R/W] B,H,W XXXXXXXX	IOWR2 [R/W] B,H,W XXXXXXXX	_	
00067C _H			_		
000680 _H	CSER [R/W] B,H,W 000000001	CHER [R/W] B,H,W 11111111	_	TCR [R/W] 00000000 (INIT) 0000XXXX (RST)	
000684 _H		V] B,H,W XXXX0XXX	-	-	

address		regi	ster	block		
auuress	+0	+1	+2	+3	DIOCK	
00068C _H to 0007F8 _H		-	-		Reserved	
0007FC _H	_	MODR [W] * ² XXXXXXXX	_	_	_	
000800 _H to 000AFC _H						
000B00 _H	ESTS0 [R/W] B X0000000	ESTS1 [R/W] B XXXXXXXX	ESTS2 [R] B 1XXXXXXX	_		
000B04 _H	ECTL0 [R/W] B 0X000000	ECTL1 [R/W] B 00000000	ECTL2 [W] B 000X0000	ECTL3 [R/W] B 00X00X11		
000B08 _H	ECNT0 [W] B XXXXXXXX	ECNT1 [W] B XXXXXXXX	EUSA [W] B XXX00000	EDTC [W] B 0000XXXX		
000B0C _H	EWPT 00000000		ECTL4 [R] B -0X00000	ECTL5 [R] ([R/W]) B 000X		
000B10 _H	EDTRO XXXXXXXX			HXXXXXXXX XXXX	DSU	
000B14 _H						
000B1C _H		-	_			
000B20 _H	xxxx	EIA0 [W] W XXXXXXXX XXXXXXXX XXXXXXX XXXXXXXX				
000B24 _H	xxxx	EIA1 XXXX XXXXXXXX	[W] W XXXXXXXX XXXX	xxxx		
000B28 _H	XXXX	EIA2 XXXX XXXXXXXX	[W] W XXXXXXXX XXXX	(XXXX		

APPENDIX

		regi	ster		block			
address –	+0	+1	+2	+3	– block			
000B2C _H	000B2C _H EIA3 [W] W XXXXXXX XXXXXXX XXXXXXXXXXXXXXXXXXX							
000B30 _H	XXXX							
000B34 _H	EIA5 [W] W XXXXXXXX XXXXXXX XXXXXXX XXXXXXXX							
000B38 _H	xxxx	EIA6 XXXX XXXXXXXX	[W] W XXXXXXXX XXXX	xxxx	DSU			
000B3C _H	xxxx	EIA7 XXXX XXXXXXXX	[W] W XXXXXXXX XXX	xxxx	(only evaluation chip)			
000B40 _H	xxxx	EDTA [XXXX XXXXXXXX	R/W] W XXXXXXXX XXXX	xxxx				
000B44 _H	xxxx	EDTM XXXX XXXXXXXX	R/W] W XXXXXXXX XXXX	xxxx				
000B48 _H	xxxx	EOA0 XXXX XXXXXXXX	[W] W XXXXXXXX XXX	xxxx	-			
000B4C _H	xxxx	EOA1 XXXX XXXXXXXX	[W] W XXXXXXXX XXX	xxxx				
000B50 _H	xxxx	xxxx	_					
000B54 _H	XXXX	EPSR XXXX XXXXXXXX	R/W] W XXXXXXXX XXXX	xxxx	_			
000B58 _H	XXXX	EIAMO XXXX XXXXXXXX	[W] W XXXXXXXX XXX	xxxx	_			
000B5C _H	xxxx	EIAM1 XXXX XXXXXXXX	[W] W XXXXXXXX XXX	xxxx	DSU (only evaluation chip)			
000B60 _H	xxxx	EOAM0/EC XXXX XXXXXXXX	DM0 [W] W XXXXXXXX XXX	xxxx	-			
000B64 _H	xxxx	EOAM1/EC XXXX XXXXXXXX	DM1 [W] W XXXXXXXX XXX	xxxx	_			
000B68 _H	xxxx	EOD0 XXXX XXXXXXXX	[W] W XXXXXXXX XXX	xxxx				
000B6C _H	XXXX	EOD1 XXXX XXXXXXXX	[W] W XXXXXXXX XXX	xxxx				
000B70 _H I			_		Reserved			
000FFC _H								

address —		block					
	+0	+1	+2	+3	DIOCK		
001000 _H	001000 _H DMASA0 [R/W] W XXXXXXX XXXXXXX XXXXXXX XXXXXXXXX						
001004 _H	DMADA0 [R/W] W XXXXXXXX XXXXXXX XXXXXXX XXXXXXXX						
001008 _H	XXXX	DMAC					
00100C _H	XXXX	DMADA XXXX XXXXXXX	xxxxx				
001010 _H	XXXX		2 [R/W] W (XXXXXXXX XXX	xxxxx			
001014 _H							
001018 _H	XXXX		3 [R/W] W (XXXXXXXX XXX	xxxxx	DMAC		
00101C _H	XXXX		3 [R/W] W (XXXXXXXX XXX	xxxxx			
001020 _H	XXXX		4 [R/W] W (XXXXXXXX XXX	xxxxx			
001024 _H	XXXX		4 [R/W] W (XXXXXXXX XXX	xxxxx	DMAC		
001028 _H to 001FFC _H			_		Reserved		

Table A-1 I/O Map (Continued)

*1: The lower 16-bit (DTC15 to 0) of DMACA0 to 4 cannot access by byte.

*2: This register is set by the mode vector fetch. It cannot access during the normal operation.

APPENDIX B INTERRUPT VECTOR

Table B-1 "Interrupt Vectors" shows the interrupt vector table, which gives the interrupt source and interrupt vector/interrupt control register allocations for the MB91301 series.

Interrupt Vectors

Table B-1 Interrupt Vectors

	Interru	upt number	Interrupt	Offset	TBR default	RN
Interrupt source	Decimal	Hexadecimal	level	Unset	address	RIN
Reset	0	00	-	3FC _H	000FFFFC _H	_
Mode vector	1	01	_	3F8 _H	000FFFF8 _H	_
Reserved for system	2	02	_	3F4 _H	000FFFF4 _H	_
Reserved for system	3	03	_	3F0 _H	000FFFF0 _H	-
Reserved for system	4	04	_	3EC _H	000FFFEC _H	_
Reserved for system	5	05	_	3E8 _H	000FFFE8 _H	-
Reserved for system	6	06	_	3E4 _H	000FFFE4 _H	-
No-coprocessor trap	7	07	_	3E0 _H	000FFFE0 _H	_
Coprocessor error trap	8	08	_	3DC _H	000FFFDC _H	-
INTE instruction	9	09	-	3D8 _H	000FFFD8 _H	-
Instruction break exception	10	0A	_	3D4 _H	000FFFD4 _H	-
Operand break trap	11	0B	_	3D0 _H	000FFFD0 _H	-
Step trace trap	12	0C	-	3CC _H	000FFFCC _H	-
NMI request (tool)	13	0D	_	3C8 _H	000FFFC8 _H	-
Undefined instruction exception	14	0E	-	3C4 _H	000FFFC4 _H	-
NMI request	15	0F	15(F _H), fixed	3C0 _H	000FFFC0 _H	_
External Interrupt 0	16	10	ICR00	3BC _H	000FFFBC _H	6
External Interrupt 1	17	11	ICR01	3B8 _H	000FFFB8 _H	7
External Interrupt 2	18	12	ICR02	3B4 _H	000FFFB4 _H	11
External Interrupt 3	19	13	ICR03	3B0 _H	000FFFB0 _H	12
External Interrupt 4	20	14	ICR04	3AC _H	000FFFAC _H	
External Interrupt 5	21	15	ICR05	3A8 _H	000FFFA8 _H	
External Interrupt 6	22	16	ICR06	3A4 _H	000FFFA4 _H	_

Table B-1 Interrupt Vectors (Continued)

	Interr	upt number	Interrupt	0/1	TBR default	
Interrupt source	Decimal	Hexadecimal	level	Offset	address	RN
External Interrupt 7	23	17	ICR07	3A0 _H	000FFFA0 _H	-
Reload Timer 0	24	18	ICR08	39C _H	000FFF9C _H	8
Reload Timer 1	25	19	ICR09	398 _H	000FFF98 _H	9
Reload Timer 2	26	1A	ICR10	394 _H	000FFF94 _H	10
UART0 (reception completed)	27	1B	ICR11	390 _H	000FFF90 _H	0
UART1 (reception completed)	28	1C	ICR12	38C _H	000FFF8C _H	1
UART2 (reception completed)	29	1D	ICR13	388 _H	000FFF88 _H	2
UART0 (transmission completed)	30	1E	ICR14	384 _H	000FFF84 _H	3
UART1 (transmission completed)	31	1F	ICR15	380 _H	000FFF80 _H	4
UART2 (transmission completed)	32	20	ICR16	37C _H	000FFF7C _H	5
DMAC0 (end, error)	33	21	ICR17	378 _H	000FFF78 _H	-
DMAC1 (end, error)	34	22	ICR18	374 _H	000FFF74 _H	_
DMAC2 (end, error)	35	23	ICR19	370 _H	000FFF70 _H	-
DMAC3 (end, error)	36	24	ICR20	36C _H	000FFF6C _H	_
DMAC4 (end, error)	37	25	ICR21	368 _H	000FFF68 _H	-
A/D	38	26	ICR22	364 _H	000FFF64 _H	15
PPG0	39	27	ICR23	360 _H	000FFF60 _H	13
PPG1	40	28	ICR24	35C _H	000FFF5C _H	14
PPG2	41	29	ICR25	358 _H	000FFF58 _H	-
PPG3	42	2A	ICR26	354 _H	000FFF54 _H	_
Reserved for system	43	2B	ICR27	350 _H	000FFF50 _H	_
U-TIMER0	44	2C	ICR28	34C _H	000FFF4C _H	-
U-TIMER1	45	2D	ICR29	348 _H	000FFF48 _H	-
U-TIMER2	46	2E	ICR30	344 _H	000FFF44 _H	_
Timebase timer overflow	47	2F	ICR31	340 _H	000FFF40 _H	_
I ² C I/F0*	48	30	ICR32	33C _H	000FFF3C _H	_
I ² C I/F1*	49	31	ICR33	338 _H	000FFF38 _H	_
Reserved for system	50	32	ICR34	334 _H	000FFF34 _H	_
Reserved for system	51	33	ICR35	330 _H	000FFF30 _H	_

APPENDIX

Table B-1 Interrupt Vectors (Continued)

	Interr	upt number	Interrupt	<i></i>	TBR default	
Interrupt source	Decimal	Hexadecimal	level	Offset	address	RN
16-bit free-run timer*	52	34	ICR36	32C _H	000FFF2C _H	_
ICU0 (fetch)*	53	35	ICR37	328 _H	000FFF28 _H	_
ICU1 (fetch)*	54	36	ICR38	324 _H	000FFF24 _H	_
ICU2 (fetch)*	55	37	ICR39	320 _H	000FFF20 _H	-
ICU3 (fetch)*	56	38	ICR40	31C _H	000FFF1C _H	-
Reserved for system	57	39	ICR41	318 _H	000FFF18 _H	-
Reserved for system	58	ЗA	ICR42	314 _H	000FFF14 _H	-
Reserved for system	59	3B	ICR43	310 _H	000FFF10 _H	-
Reserved for system	60	3C	ICR44	30C _H	000FFF0C _H	-
Reserved for system	61	3D	ICR45	308 _H	000FFF08 _H	-
Reserved for system	62	3E	ICR46	304 _H	000FFF04 _H	-
Delayed interrupt source bit	63	3F	ICR47	300 _H	000FFF00 _H	_
Reserved for system (used by REALOS)	64	40	_	2FC _H	000FFEFC _H	_
Reserved for system (used by REALOS)	65	41	_	2F8 _H	000FFEF8 _H	_
Reserved for system	66	42	-	2F4 _H	000FFEF4 _H	-
Reserved for system	67	43	-	2F0 _H	000FFEF0 _H	-
Reserved for system	68	44	-	2EC _H	000FFEEC _H	-
Reserved for system	69	45	-	2E8 _H	000FFEE8 _H	-
Reserved for system	70	46	_	2E4 _H	000FFEE4 _H	-
Reserved for system	71	47	-	2E0 _H	000FFEE0 _H	-
Reserved for system	72	48	-	2DC _H	000FFEDC _H	-
Reserved for system	73	49	-	2D8 _H	000FFED8 _H	-
Reserved for system	74	4A	-	2D4 _H	000FFED4 _H	-
Reserved for system	75	4B	_	2D0 _H	000FFED0 _H	-
Reserved for system	76	4C	_	2CC _H	000FFECC _H	-
Reserved for system	77	4D	_	2C8 _H	000FFEC8 _H	-
Reserved for system	78	4E	_	2C4 _H	000FFEC4 _H	_
Reserved for system	79	4F	-	2C0 _H	000FFEC0 _H	_
Used in INT instruction	80 to 255	50 to FF	-	2BC _H to 000 _H	000FFEBC _H to 000FFC00 _H	_

Table B-1 Interrupt Vectors (Continued)

Interrupt source	Interru	upt number	Interrupt	Offset	TBR default	RN
interrupt source	Decimal	Hexadecimal	level	Onset	address	1114

Note 1: The ICR is a register set in the interrupt controller that sets the interrupt level for each interrupt request. The ICR is provided to support each interrupt request.

Note 2: The TBR is a register that indicates the first address of the EIT vector table. The vector address can be obtained by adding the offset value defined for each TBR and EIT source to the address.

*: System - reserved on the MB91301 and MB91V301.

Reference:

The 1 KB area from the address indicated by the TBR is the vector area for EIT.

The size of each vector is 4 bytes and the relation between the vector number and vector address can be represented as follows:

vctadr = TBR + vctofs

=TBR + (3FC_H-4 x vct)

vctadr: Vector address

vctofs: Vector offset

vct: Vector number

Table C-1 "Pin States in External Bus 16-Bit Mode" to Table C-2 "Pin States in External Bus 8-Bit Mode list" the pin states in each CPU state.

Meaning of Terms in the Pin State Table

Terms related to the pin state have the following meanings:

Input ready

Means that the input function can be used.

• Input 0 fixed

Means that external input is cut off at the input gate following the pin and 0 is sent inside.

• Output Hi-Z

Means that the pin drive transistor is disabled and the pin is set to high impedance.

Output retained

Means that the state output just before a mode is entered is output as is.

That is, if any built-in peripheral with output is active, the output is determined by the built-in peripheral. For output as a port, the output is retained.

• Preceding state retained

Means that the state output just before a mode is entered is output as is. Also means input ready if the state is the input state.

■ Pin State Table

			Function	At initializa	tion (INIT)		Stop r	node	Bus re	hased
Pin no.	Port name	Specified function	name	Function name	Initial	Sleep mode	HIZ=0	HIZ=1		RNT)
		name	Bus width 32 bit	Bus width 8 bit	value		1112-0	1112-1	CS shared	CS not shared
1 to 5	P13 to P17	D11 to D15	D11 to D15	P13 to P17		P: Previous	P: Previous	Output		
8 to 15	P20 to P27	D16 to D23	D16 to D23	P20 to P27	Output	state held	state held	Hi-Z/	Output	Output
18 to 25	P30 to P37	D24 to D31	D24 to D31	D24 to D31	Hi-Z Input ready	F : Output held or Hi-Z	F : Output held or Hi-Z	input 0 fixed	Hi-Z	Hi-Z
8	P80	RDY	P80	P80		P : Previous state held F : RDY in- put			P : Previ- ous state held F : RDY input	P : Previ- ous state held F : RDY input
29	P81	BGRNT	P81	P81	Output Hi-Z Input ready	P : Previous state held F : H output	Previous state held		L output	L output
30	P82	BRQ	P82	P82		P: Previous state held F: BRQ in- put invalid		Output Hi-Z/in- put 0 fixed	BRQ input	BRQ inpu
31	P83	RD	RD	RD						
32	P84	DQMUU/ WR0	DQMUU/ WR0	DQMUU/ WR0	H output					
33	P85	DQMUL/ WR1	DQMUL/ WR1	P85		P: Previous state held	Previous state held		Output Hi-Z	Output Hi-Z
34	P86	DQMLU/ WR2	DQMLU/ WR2	P86	F : H output	F : H output	state neid		111-22	111-22
35	P87	DQMLL/ WR3	DQMLL/ WR3	P87						
36	P90	SYSCLK	SYSCLK	SYSCLK	Asserted : L output Negated : CLK out- put	P : Previous state held F : SY- SCLK out- put	P : Previous state held F : H or L output	Output Hi-Z/ input 0 fixed	F : CLK output	F : CLK output
37	P91	MCLKE	MCLKE	MCLKE	H output	F : L output	F:Loutput	F : Output Hi-Z	Output Hi-Z	H output
38	P92	MCLK	MCLK	MCLK	Asserted : L output Negated : CLK out- put	state held	P : Previous state held F : H output	F : Output Hi-Z	Output Hi-Z	F : CLK output
39	P93	-	P93	P93	Output Hi-Z Input ready	Previous state held	Previous state held	Output Hi-Z	Output Hi-Z	Output Hi-Z

Table C-1 Pin States in External Bus 32-Bit Mode

Table C-1	Pin States	in External	Bus	32-Bit Mode
-----------	-------------------	-------------	-----	-------------

			Function	At initializa	tion (INIT)		Stop r	node	Buo ro	leased
Pin no.	Port name	Specified function	name	Function name	Initial	Sleep mode	HIZ=0	HIZ=1		RNT)
	hame	name	Bus width 32 bit	Bus width 8 bit	value	mode	1112=0	112=1	CS shared	CS not shared
40	P94	SRAS/ LBA/AS	P94	P94	Output Hi-Z Input ready	P : Previous state held F : H output	H output	Output Hi-Z	Output Hi-Z	F : H out- put
41	P95	SCAS/BAA	P95	P95	Output Hi-Z Input ready	P : Previous state held F : H output	H output	Output Hi-Z	Output Hi-Z	H output
42	P96	SWE/WR	P96	P96	Output Hi-Z Input ready	P : Previous state held F : SWE output	Previous state held	Output Hi-Z/ input 0 fixed	Output Hi-Z	Previous state held
45 to 52	P40 to P47	A00 to A07	A00 to A07	A00 to A07						
55 to 62	P50 to P57	A08 to A15	A08 to A15	A08 to A15						
64 to 67	P60 to P63	A16 to A19	A16 to A19	A16 to A19		P: Previous		Output		
68	P64	A20/SDA0	A20	A20	FF output	state held	The same as	Hi-Z/	Output	Output
69	P65	A21/SCL0	A21	A21		F: Address	stated left	input 0 fixed	Hi-Z	Hi-Z
70	P66	A22/SDA1	A22	A22		output		lixeu		
71	P67	A23/SCL1	A23	A23						
76 to 79		AN0 to	AN0 to	AN0 to	input in-	Previous	input in-	input in-	Previous	Previous
701079	_	AN3	AN3	AN3	valid	state held	valid	valid	state held	state held
81	PG0	INT0/ICU0	PG0	PG0	Output	P: Previous	P: Previous	P:Output		
82	PG1	INT1/ICU1	PG1	PG1	Hi-Z	state held	state held	Hi-Z	Normal	Normal
83	PG2	INT2/ICU2	PG2	PG2	Input ready	F: Normal	F : Input	F : Input	operation	operation
84	PG3	INT3/ICU3	PG3	PG3	1	operation	ready	ready		
85	PG4	INT4/ATG/ FRCK	PG4	PG4		P : Previous	P : Previous	P : Output		
86	PG5	INT5/SIN2	PG5	PG5	Output Hi-Z	state held	state held	Hi-Z	Normal	Normal
87	PG6	INT6/SOT2	PG6	PG6	Input ready	F: Normal	F : Input	F : Input	operation	operation
88	PG7	INT7/ SCK2	PG7	PG7	input ready	operation	ready	ready		
90	PJ0	SIN0	PJ0	PJ0						
91	PJ1	SOT0	PJ1	PJ1						
92	PJ2	SCK0	PJ2	PJ2		P: Previous		Output		
93	PJ3	SIN1	PJ3	PJ3	Output	state held	Previous	Hi-Z/	Normal	Normal
94	PJ4	SOT1	PJ4	PJ4	Hi-Z Input ready	F : Normal	state held	input 0	operation	operation
95	PJ5	SCK1	PJ5	PJ5	mput reauy	operation		fixed		
96	PJ6	PPG0	PJ6	PJ6						
97	PJ7	TRG0	PJ7	PJ7						
98	PH0	TIN0	PH0	PH0	0	P: Previous		Output		
99	PH1	TIN1/PPG3	PH1	PH1	Output	state held	Previous	Hi-Z/	Normal	Normal
100	PH2	TIN2/ TRG3	PH2	PH2	Hi-Z Input ready	F : Normal operation	state held	input 0 fixed	operation	operation

			Function	At initializa	tion (INIT)		Stop r	node	Bue ro	leased
Pin no.	Port name	Specified function	name	Function name	Initial	Sleep mode	HIZ=0	HIZ=1		RNT)
		name	Bus width 32 bit	Bus width 8 bit	value		112-0	1112-1	CS shared	CS not shared
103	PB0	DREQ0	PB0	PB0						
104	PB1	DACK0	PB1	PB1						
105	PB2	DEOP0	PB2	PB2						
106	PB3	DREQ1	PB3	PB3	Output	P: Previous		Output		
107	PB4	DACK1/ TRG1	PB4	PB4	Output Hi-Z Input ready	state held F : Normal	Previous state held	Hi-Z/ input 0	Normal operation	Normal operation
108	PB5	DEOP1/ PPG1	PB5	PB5	input ready	operation		fixed		
109	PB6	IOWR	PB6	PB6						
110	PB7	IORD	PB7	PB7						
122	PA0	CS0	CS0	CS0						
123	PA1	CS1	CS1	CS1					F :	F:
124	PA2	CS2	CS2	CS2					SREN=0:	SREN=0:
125	PA3	CS3	CS3	CS3	H output	H output	H output	Output	H output	H output
126	PA4	CS4/TRG2	CS4	CS4	n output	пошри	n output	Hi-Z	SREN=1:	SREN=1:
127	PA5	CS5/PPG2	CS5	CS5					Output	Output
128	PA6	CS6	CS6	CS6					Hi-Z	Hi-Z
129	PA7	CS7	CS7	CS7						
132 to 139	P00 to P07	D00 to D07	D00 to D07	P00 to P07	Output	P: Previous state held	P : Previous state held	Output Hi-Z/	Output	Output
142 to 144	P10 to P12	D08 to D10	D08 to D10	P10 to P12	Hi-Z Input ready	F : Output held or Hi-Z	F : Output held or Hi-Z	input 0 fixed	Hi-Z	Hi-Z

Table C-1 Pin States in External Bus 32-Bit Mode

P : General-purpose port selected, F : Specified function selected

* : The following port's function can be used on only MB91302A and MB91V301A, SDA0, SCL0, SDA1, SCL1 of 68 to 71 pin, ICU0 to ICU3, FRCK of 81 to 85 pin.

Note : The bus width is determined after a mode vector fetch. The bus width at initialization time is 8 bits.

			Function	At initializa ⁻	tion (INIT)		Stop r	node	Bus re	based
Pin no.	Port name	Specified function name	Bus width	Function name Bus width 8 bit	Initial value	Sleep mode	HIZ=0	HIZ=1		RNT) CS not shared
1 to 5	P13 to P17	D11 to D15	P13 to P17	P13 to P17	Output	P : Previ- ous state	P : Previ- ous state	Output		
8 to 15	P20 to P27	D16 to D23	D16 to D23	P20 to P27	Hi-Z Input	held F : Output	held F : Output	Hi-Z/ input 0	Output Hi-Z	Output Hi-Z
18 to 25	P30 to P37	D24 to D31	D24 to D31	D24 to D31	ready	held or Hi-Z	held or Hi-Z	fixed		
28	P80	RDY	P80	P80		P : Previ- ous state held F : RDY input			P : Previ- ous state held F : RDY input	P : Previ- ous state held F : RDY input
29	P81	BGRNT	P81	P81	Output Hi-Z Input ready	P : Previ- ous state held F : H out- put	Previous state held		L output	L output
30	P82	BRQ	P82	P82		P : Previ- ous state held F : BRQ input in- valid		Output Hi-Z/ input 0 fixed	BRQ input	BRQ input
31	P83	RD	RD	RD						
32	P84	DQMUU/ WR0	DQMUU/ WR0	DQMUU/ WR0	H output	P : Previ-				
33	P85	DQMUL/ WR1	DQMUL/ WR1	P85		ous state held	Previous state held		Output Hi-Z	Output Hi-Z
34	P86	DQMLU/ WR2	P86	P86	F : H out- put	F : H out- put	state nero		111-22	111-22
35	P87	DQMLL/ WR3	P87	P87						
36	P90	SYSCLK	SYSCLK	SYSCLK	Asserted : L output Negated : CLK out- put	P : Previ- ous state held F : SY- SCLK out- put	P : Previ- ous state held F : H or L output	Output Hi-Z/in- put 0 fixed	F : CLK output	F : CLK output
37	P91	MCLKE	MCLKE	MCLKE	H output	F : L out- put	F : L out- put	F:Output Hi-Z	Output Hi-Z	H output

Table C-2 Pin States in External Bus 16-Bit Mode

				At initializat			Stop	mode		
		Specified	Function	Function			Stop I	lioue	Bus re	
Pin no.	Port	function	name	name	Initial	Sleep			(BG	RNT)
	name	name	Bus width	Bus width	value	mode	HIZ=0	HIZ=1	CS	CS not
			16 bit	8 bit					shared	shared
					Asserted	P : Previ-	P : Previ-			
					: L output	ous state	ous state	F : Output	Output	F:CLK
38	P92	MCLK	MCLK	MCLK	Negated	held	held	Hi-Z	Hi-Z	output
					: CLK out-	F : H out-	F : H out-			F
					put	put	put			
					Output	D '	D ·	р ·	0.4.4	0.4.4
39	P93	-	P93	P93	Hi-Z	Previous	Previous	Previous	Output	Output
					Input ready	state held	state held	state held	Hi-Z	Hi-Z
					Teady	P : Previ-				
					Output	ous state				
40	P94	SRAS/	P94	P94	Hi-Z	held	H output	Output	Output	F:Hout-
	- / .	LBA/AS			Input	F : H out-		Hi-Z	Hi-Z	put
					ready	put				
					Output	P : Previ-				
					Output Hi-Z	ous state		Output	Output	
41	P95	SCAS/BAA	P95	P95	In-2 Input	held	H output	Hi-Z	Hi-Z	H output
					ready	F : H out-		111-22	111-22	
					,	put				
					Output	P : Previ-		Output		
40	DOC	SWE/WR	DOC	DOC	Hi-Z	ous state	Previous	Hi-Z/	Output	Previous
42	P96	SWE/WK	P96	P96	Input	held F : SWE	state held	input 0	Hi-Z	state held
					ready	output		fixed		
	P40 to					output				
45 to 52	P47	A00 to A07	A00 to A07	A00 to A07						
55 . (2	P50 to	400 . 415	100 . 115	4.00 - 4.15						
55 to 62	P57	A08 to A15	A08 to A15	A08 to A15		P : Previ-		Output		
64 to 67	P60 to	A16 to A19	A16 to A19	A16 to A19		ous state	The same	Hi-Z/	Output	Output
04 10 07	P63	A10 10 A19	A10 10 A19	A10 10 A19	FF output	held F : Address	as stated left	input 0	Hi-Z	Hi-Z
68	P64	A20/SDA0	A20	A20		output	leit	fixed		
69	P65	A21/SCL0	A21	A21		P ar				
70	P66	A22/SDA1	A22	A22						
71	P67	A23/SCL1	A23	A23						
76 to 79	-	AN0 to	AN0 to	AN0 to	input	Previous	input	input i	Previous	Previous
		AN3	AN3	AN3	invalid	state held	invalid	nvalid	state held	state held
					Output	P : Previ-	P : Previ-	P:Output		
01	DCO		DCO	DCO	Hi-Z	ous state	ous state	Hi-Z	Normal	Normal
81	PG0	INT0/ICU0	PG0	PG0	Input	held F : Normal	held E : Input	F : Input	operation	operation
					ready	operation	F : Input ready	ready		
						operation	reauy		ļ	

Table C-2 Pin States in External Bus 16-Bit Mode

Table C-2 Pin States in External Bus 16-Bit Mode
--

			Function	At initializat	tion (INIT)		Stop ı	node	Bus ro	leased
Pin no.	Port name	Specified function	name	Function name	Initial	Sleep mode	HIZ=0	HIZ=1		RNT)
		name	Bus width 16 bit	Bus width 8 bit	value		1112-0	1112-1	CS shared	CS not shared
82	PG1	INT1/ICU1	PG1	PG1						
83	PG2	INT2/ICU2	PG2	PG2		D D .				
84	PG3	INT3/ICU3	PG3	PG3	Output	P : Previ- ous state	P : Previ- ous state	P:Output		
85	PG4	INT4/ATG/ FRCK	PG4	PG4	Hi-Z Input	held F : Normal	held F : Input	Hi-Z F : Input	Normal operation	Normal operation
86	PG5	INT5/SIN2	PG5	PG5	ready	operation	ready	ready		
87	PG6	INT6/SOT2	PG6	PG6		· r · · · · · ·				
88	PG7	INT7/SCK2	PG7	PG7						
90	PJ0	SIN0	PJ0	PJ0						
91	PJ1	SOT0	PJ1	PJ1						
92	PJ2	SCK0	PJ2	PJ2	Output	P : Previ-		Output		
93	PJ3	SIN1	PJ3	PJ3	Hi-Z	ous state	Previous	Hi-Z/	Normal	Normal
94	PJ4	SOT1	PJ4	PJ4	Input	held F : Normal operation	state held	input 0	operation	operation
95	PJ5	SCK1	PJ5	PJ5	ready			fixed		
96	PJ6	PPG0	PJ6	PJ6		operation				
97	PJ7	TRG0	PJ7	PJ7						
98	PH0	TIN0	PH0	PH0	Output	P : Previ-		Output		
99	PH1	TIN1/PPG3	PH1	PH1	Hi-Z	ous state	Previous	Hi-Z/	Normal	Normal
100	PH2	TIN2/TRG3	PH2	PH2	Input ready	held F : Normal operation	state held	input 0 fixed	operation	operatior
103	PB0	DREQ0	PB0	PB0						
104	PB1	DACK0	PB1	PB1						
105	PB2	DEOP0	PB2	PB2		D D .				
106	PB3	DREQ1	PB3	PB3	Output	P : Previ-		Output		
107	PB4	DACK1/ TRG1	PB4	PB4	Hi-Z Input	ous state held F : Normal	Previous state held	Hi-Z/ input 0	Normal operation	Normal operation
108	PB5	DEOP1/ PPG1	PB5	PB5	ready	operation		fixed		
109	PB6	IOWR	PB6	PB6	1					
110	PB7	IORD	PB7	PB7						
122	PA0	CS0	CS0	CS0						
123	PA1	CS1	CS1	CS1					F :	F :
124	PA2	CS2	CS2	CS2					SREN=0	SREN=
125	PA3	CS3	CS3	CS3	TT	TT	TT	Output	: H output	
126	PA4	CS4/TRG2	CS4	CS4	H output	H output	H output	Hi-Z	SREN=1	1 SREN=1
127	PA5	CS5/PPG2	CS5	CS5					: Output	
128	PA6	CS6	CS6	CS6	1				Hi-Z	Hi-Z
129	PA7	CS7	CS7	CS7						

			Function	At initializat	ion (INIT)		Stop r	node	Bue ro	leased
Pin no.	Port name	Specified function	name	Function name	Initial	Sleep mode	HIZ=0	HIZ=1		RNT)
		name	Bus width 16 bit	Bus width 8 bit	value		1112-0	1112-1	CS shared	CS not shared
132 to	P00 to	D00 to D07	P00 to P07	P00 to P07		P : Previ-	P : Previ-			
139	P07	D00 t0 D07	10010107	10010107	Output	ous state	ous state	Output		
					Hi-Z	held	held	Hi-Z/	Output	Output
142 to	P10 to	D08 to D10	P10 to P12	P10 to P12	Input	F : Output	F : Output	input 0	Hi-Z	Hi-Z
144	P12	D08 10 D10	F1010P12	F10 10 P12	ready	held or	held or	fixed		
						Hi-Z	Hi-Z			

Table C-2 Pin States in External Bus 16-Bit Mode

P : General-purpose port selected, F : Specified function selected

* : The following port's function can be used on only MB91302A and MB91V301A, SDA0, SCL0, SDA1, SCL1 of 68 to 71 pin, ICU0 to ICU3, FRCK of 81 to 85 pin.

Note : The bus width is determined after a mode vector fetch.

The bus width at initialization time is 8 bits.

		Quantificat	Function	At ini <u>tia</u> (IN			Stop r	node		leased
Pin no.	Port name	Specified function name	name	Function name	Initial	Sleep mode	HIZ=0	HIZ=1	(BG	RNT)
			Bus width 8 bit	Bus width 8 bit	value		1112-0	1112-1	CS shared	CS not shared
1 to 5	P13 to P17	D11 to D15	P13 to P17	P13 to P17	Output	P : Previous	P : Previ- ous state	Output		
8 to 15	P20 to P27	D16 to D23	P20 to P27	P20 to P27	Hi-Z Input ready	state held F : Output	held F : Output	Hi-Z/ input 0	Output Hi-Z	Output Hi-Z
18 to 25	P30 to P37	D24 to D31	D24 to D31	D24 to D31		held or Hi-Z	held or Hi-Z	fixed		
28	P80	RDY	P80	P80		P : Previous state held F : RDY input			P : Previ- ous state held F : RDY input	P : Previ- ous state held F : RDY input
29	P81	BGRNT	P81	P81	Output Hi-Z Input ready	P : Previous state held F : H output	Previous state held		L output	L output
30	P82	BRQ	P82	P82		P : Previous state held F : BRQ input invalid		Output Hi-Z/ input 0	BRQ input	BRQ input
31	P83	RD	RD	RD				fixed		
32	P84	DQMUU/ WR0	DQMUU/ WR0	DQMUU/ WR0	H output					
33	P85	DQMUL/ WR1	P85	P85		P : Previous state held	Previous state held		Output Hi-Z	Output Hi-Z
34	P86	DQMLU/ WR2	P86	P86	F : H out- put	F : H output	state neru		ni-z	ni-z
35	P87	DQMLL/ WR3	P87	P87						
36	P90	SYSCLK	SYSCLK	SYSCLK	Asserted : L output Negated : CLK out- put	P : Previous state held F : SYSCLK output	P : Previ- ous state held F : H or L output	Output Hi-Z/in- put 0 fixed	F : CLK output	F : CLK output
37	P91	MCLKE	MCLKE	MCLKE	H output	F : L output	F : L out- put	F : Out- put Hi-Z	Output Hi-Z	H output
38	P92	MCLK	MCLK	MCLK	Asserted : L output Negated : CLK out- put	P : Previous state held F : H output	P : Previ- ous state held F : H out- put	F : Out- put Hi-Z	Output Hi-Z	F : CLK output
39	P93	-	P93	P93	Output Hi-Z Input ready	Previous state held	Previous state held	Previous state held	Output Hi-Z	Output Hi-Z

Table C-3 Pin States in External Bus 8-Bit Mode

APPENDIX C PIN STATE IN EACH CPU STATE

			Function	At ini <u>tia</u> (IN	lization		Stop r	node	Bus released	
Pin no.	Port name	Specified function name	name	Function name	Initial	Sleep mode	HIZ=0	HIZ=1		RNT)
			Bus width 8 bit	Bus width 8 bit	value				CS shared	CS not shared
40	P94	SRAS/ LBA/AS	P94	P94	Output Hi-Z Input ready	P : Previous state held F : H output	H output	Output Hi-Z	Output Hi-Z	F : H out- put
41	P95	SCAS/BAA	P95	P95	Output Hi-Z Input ready	P : Previous state held F : H output	H output	Output Hi-Z	Output Hi-Z	H output
42	P96	SWE/WR	P96	P96	Output Hi-Z Input ready	P : Previous state held F : SWE out- put	Previous state held	Output Hi-Z/in- put 0 fixed	Output Hi-Z	Previous state held
45 to 52	P40 to P47	A00 to A07	A00 to A07	A00 to A07						
55 to 62	P50 to P57	A08 to A15	A08 to A15	A08 to A15		P : Previous		Output		
64 to 67	P60 to P63	A16 to A19	A16 to A19	A16 to A19	FF output	state held F : Address	The same as stated left	Hi-Z/in- put 0	Output Hi-Z	Output Hi-Z
68	P64	A20/SDA0	A20	A20		output	lett	fixed		
69	P65	A21/SCL0	A21	A21						
70	P66	A22/SDA1	A22	A22						
71	P67	A23/SCL1	A23	A23						
76 to 79	-	AN0 to AN3	AN0 to AN3	AN0 to AN3	input invalid	Previous state held	input invalid	input invalid	Previous state held	Previous state held
81	PG0	INT0/ICU0	PG0	PG0	Output Hi-Z Input ready	P : Previous state held F : Normal operation	P : Previ- ous state held F : Input ready	P : Out- put Hi-Z F : Input ready	Normal operation	Normal operation
82	PG1	INT1/ICU1	PG1	PG1						
83	PG2	INT2/ICU2	PG2	PG2						
84	PG3	INT3/ICU3	PG3	PG3	Output H1- Z	P : Previous	P : Previ-	P:Out-		
85	PG4	INT4/ATG/ FRCK	PG4	PG4		state held F : Normal	ous state held	put Hi-Z F : Input	Normal operation	Normal operation
86	PG5	INT5/SIN2	PG5	PG5	Input ready	operation	F : Input ready	ready		
87	PG6	INT6/SOT2	PG6	PG6			ready			
88	PG7	INT7/SCK2	PG7	PG7						

Table C-3 Pin States in External Bus 8-Bit Mode

		Specified	Function	At ini <u>tia</u> (IN			Stop mode		Bus released	
Pin no.	Port name	function	name	Function name	Initial	Sleep mode	HIZ=0	HIZ=1	(BGRNT)	
			Bus width 8 bit	Bus width 8 bit	value		112-0	1112-1	CS shared	CS not shared
90	PJ0	SIN0	PJ0	PJ0						
91	PJ1	SOT0	PJ1	PJ1						Normal
92	PJ2	SCK0	PJ2	PJ2		P : Previous		Output		
93	PJ3	SIN1	PJ3	PJ3	Output Hi-Z	state held	Previous	Hi-Z/	Normal	
94	PJ4	SOT1	PJ4	PJ4	Input ready	F : Normal	state held	input 0	operation	operation
95	PJ5	SCK1	PJ5	PJ5	input ready	operation		fixed		
96	PJ6	PPG0	PJ6	PJ6						
97	PJ7	TRG0	PJ7	PJ7						
98	PH0	TIN0	PH0	PH0	_	P : Previous		Output		
99	PH1	TIN1/PPG3	PH1	PH1	Output	state held	Previous	Hi-Z/	Normal	Normal
100	PH2	TIN2/ TRG3	PH2	PH2	Hi-Z Input ready	F : Normal operation	state held	input 0 fixed	operation	operation
103	PB0	DREQ0	PB0	PB0						
104	PB1	DACK0	PB1	PB1						
105	PB2	DEOP0	PB2	PB2		P : Previous				
106	PB3	DREQ1	PB3	PB3				Output		
107	PB4	DACK1/ TRG1	PB4	PB4	Output Hi-Z	state held F : Normal	Previous state held	Hi-Z/ input 0	Normal operation	Normal operation
108	PB5	DEOP1/ PPG1	PB5	PB5	Input ready	operation		fixed		
109	PB6	IOWR	PB6	PB6						
110	PB7	IORD	PB7	PB7						
122	PA0	CS0	CS0	CS0						
123	PA1	CS1	CS1	CS1					F :	F :
124	PA2	CS2	CS2	CS2					SREN=0	SREN=0:
125	PA3	CS3	CS3	CS3	TT		TT	Output	: H output	H output
126	PA4	CS4/TRG2	CS4	CS4	H output	H output	H output	Hi-Z	SREN=1	SREN=1:
127	PA5	CS5/PPG2	CS5	CS5					: Output	Output
128	PA6	CS6	CS6	CS6					Hi-Z	Hi-Z
129	PA7	CS7	CS7	CS7						
132 to 139	P00 to P07	D00 to D07	P00 to P07	P00 to P07	Output H;	P : Previous	P : Previ- ous state	Output		
142 to 144	P10 to P12	D08 to D10	P10 to P12	P10 to P12	Output Hi- Z Input ready	state held F : Output held or Hi-Z	held F : Output held or Hi-Z	Hi-Z/ input 0 fixed	Hi-Z/ Output nput 0 Hi-Z	Output Hi-Z

Table C-3 Pin States in External Bus 8-Bit Mode

P : General-purpose port selected, F : Specified function selected

* : The following port's function can be used on only MB91302A and MB91V301A, SDA0, SCL0, SDA1, SCL1 of 68 to 71 pin, ICU0 to ICU3, FRCK of 81 to 85 pin.

Note : The bus width is determined after a mode vector fetch.

The bus width at initialization time is 8 bits.

			. .	zation (INIT)		Stop r	node	
Pin no.	Port name	Specified	Function name	Initial value	Sleep mode			
		function name	Bus width 8 bit Internal ROM mode vactor (MD2-0=000)			HIZ=0	HIZ=1	
1 to 5	P13 to P17	-	P13 to P17		Previous state	Previous state		
8 to 15	P20 to P27	-	P20 to P27		held	held		
18 to 25	P30 to P37	-	P30 to P37		Output Hi-Z	Output Hi-Z		
28	P80	-	P80					
29	P81	-	P81					
30	P82	-	P82					
31	P83	-	P83					
32	P84	-	P84					
33	P85	-	P85					
34	P86	P86 - P86						
35	P87	-	P87		Previous state held	Previous state held	Output Hi-Z/ input 0 fixed	
36	P90	-	P90					
37	P91	-	P91	Output Hi-Z/ Input ready				
38	P92	-	P92	mput ready				
39	P93	-	P93					
40	P94	SRAS	P94					
41	P95	SCAS/BAA	P95					
42	P96	SWE/WR	P96					
45 to 52	P40 to P47	-	P40 to P47		Output LL 7			
55 to 62	P50 to P57	-	P50 to P57		Output Hi-Z	Output Hi-Z		
64 to 67	P60 to P63	-	P60 to P63					
68	P64	SDA0	P64					
69	P65	SCL0	P65		Previous state	Previous state held		
70	P66	SDA1	P66	1	held			
71	P67	SCL1	P67					
76 to 79	-	AN0 to AN3	AN0 to AN3	input invalid	1	input invalid	input invalid	

 Table C-4
 Pin States in External Bus Single Chip Mode

		n External Bus	•	zation (INIT)		Stop r	node	
Pin no.	Port name	Specified function name	Function name	Initial value	Sleep mode			
		function name	Bus width 8 bit	Internal ROM mode vactor (MD2-0=000)		HIZ=0	HIZ=1	
81	PG0	INT0/ICU0	PG0					
82	PG1	INT1/ICU1	PG1					
83	PG2	INT2/ICU2	PG2					
84	PG3	INT3/ICU3	PG3			P : Previous	P : Output Hi-Z	
85	PG4	INT4/ATG/ FRCK	PG4				F : Input ready	
86	PG5	INT5/SIN2	PG5			state held	roudy	
87	PG6	INT6/SOT2	PG6			F : Input		
88	PG7	INT7/SCK2	PG7			ready Previous state		
90	PJ0	SIN0	PJ0			held		
91	PJ1	SOT0	PJ1					
92	PJ2	SCK0	PJ2				Output Hi-Z/	
93	PJ3	SIN1	PJ3		Previous state held		input 0 fixed	
94	PJ4	SOT1	PJ4					
95	PJ5	SCK1	PJ5					
96	PJ6	PPG0	PJ6	Output Hi-Z/				
97	PJ7	TRG0	PJ7	Input ready				
98	PH0	TIN0	PH0					
99	PH1	TIN1/PPG3	PH1					
100	PH2	TIN2/TRG3	PH2					
103	PB0	-	PB0					
104	PB1	-	PB1					
105	PB2	-	PB2			Previous state	Output Hi-Z/	
106	PB3	-	PB3	1		held	input 0 fixed	
107	PB4	TRG1	PB4	1				
108	PB5	PPG1	PB5					
109	PB6	-	PB6					
110	PB7	-	PB7	1				
122	PA0	-	PA0	1				
123	PA1	-	PA1					
124	PA2	-	PA2					

Table C-4 Pin States in External Bus Single Chip Mode

APPENDIX C PIN STATE IN EACH CPU STATE

			U			a .		
			At initializ	zation (INIT)		Stop mode		
Pin no.	Port name	Specified	Function name	Initial value	Sleep mode		HIZ=1	
T III IIO.		function name	Bus width 8 bit	Internal ROM mode vactor (MD2-0=000)		HIZ=0		
125	PA3	-	PA3			Previous state held	Output Hi-Z/ input 0 fixed	
126	PA4	TRG2	PA4		Previous state held			
127	PA5	PPG2	PA5					
128	PA6	-	PA6	Output Hi-Z/ Input ready				
129	PA7	-	PA7	input ready				
132 to 139	P00 to P07	-	P00 to P07]				
142 to 144	P10 to P12	-	P10 to P12					

Table C-4 Pin States in External Bus Single Chip Mode

P : General-purpose port selected, F : Specified function selected

* : The following port's function can be used on only MB91302A and MB91V301A, SDA0, SCL0, SDA1, SCL1 of 68 to 71 pin, ICU0 to ICU3, FRCK of 81 to 85 pin.

Note : The bus width is determined after a mode vector fetch. The bus width at initialization time is 8 bits.

APPENDIX D NOTES ON USING A LITTLE ENDIAN AREA

This section provides notes on the use of a little endian area classified with the following items:

These items are not supported by the MB91301 series.

- D.1 "C Compiler (fcc911)"
- D.2 "Assembler (fasm911)"
- D.3 "Linker (flnk911)"
- D.4 "Debugger (sim911, eml911, mon911)"

D.1 C Compiler (fcc911)

Note that when programming is done in the C language, behavior cannot be guaranteed if the following operations are performed for a little endian area:

- Allocation of a variable with an initial value
- Structure assignment
- Operations other than character string arrangement using a character string manipulation function
- Specification of the -K lib option when a character string manipulation function is used
- Use of the double type or long double type
- Allocation of a stack to a little endian area
- Allocation of a Variable with an Initial Value

Allocation of a variable with an initial value to a little endian area is not allowed.

No compiler has a function that generates the initial value of a little endian area. Although it is possible to allocate a variable to a little endian area, an initial value cannot be set.

Include processing at the beginning of a program that sets an initial value.

[Example] Setting an initial value for the variable little_data in a little endian area

Structure Assignment

When a structure is assigned to another structure, the compiler selects the optimal transfer method (byte, halfword, or word). Thus, if structure assignment is performed between a structure variable allocated to an ordinary area and a structure variable allocated to a little endian area, a correct result cannot be obtained.

It is therefore necessary to assign each member in the structure.

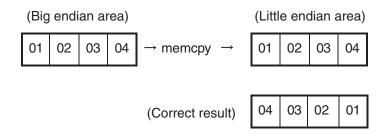
[Example] Assigning a structure to the structure variable little_st in a little endian area

```
struct tag { char c; int i; } normal_st;
extern struct tag little_st;
#define STRMOVE(DEST,SRC) DEST.c=SRC.c;DEST.i=SRC.i;
void main(void) {
    STRMOVE(little_st,normal_st);
}
```

Since the allocation of the members of a structure is different from compiler to compiler, the allocation of members by one compiler will be different from the allocation by another compiler. If the allocation method is different, it is not possible to obtain the correct result even the method described above is used.

If the allocation of members of a structure varies, do not allocate any structure variable to a little endian area.

Operations Other Than the String Arrangement Using a String Manipulation Function


Since character string manipulation functions provided as a standard library perform their processing in bytes, correct results cannot be obtained if processing using a character string manipulation function is performed in an area with a type other than the char type, unsigned char type, or signed char type allocated within a little endian area.

Do not perform processing such as that described above.

[Example of incorrect coding] Transfer of word data using memcpy

```
int big = 0x01020304;  /* Big endian area */
extern int little;  /* Little endian area */
memcpy(&little,&big,4); /* Transfer using memcpy */
```

The result of the above code is shown below, and, as the result of transferring word data, is an error.

Specification of the -K lib Option When Using a String Manipulation Function

If the -K lib option is specified, the compiler performs inline expansion for some of the string manipulation functions. At this point, processing may be changed to processing using halfwords or words as a way to select the optimal processing.

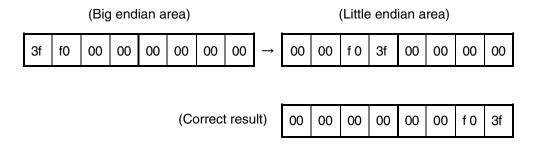
If processing is changed in this manner, processing on a little endian area will not be performed correctly.

Do not specify the -K lib option when performing processing for a little endian area that uses a string manipulation function.

Also, do not specify the -O4 option and -K speed option, each of which includes the -K lib option.

Use of the Double Type or Long Double Type

Access to double type or long double type data is performed by accessing one high-order word or one low-order word. Thus, when a double type or long double type variable allocated to a little endian area is accessed, correct results cannot be obtained.


The assignment of variables of the same type allocated to a little endian area can be done, but as a result of optimization, the assignment of variables may be replaced by the assignment of constants.

Do not allocate double type and long double type variables to a little endian area.

[Example of incorrect coding] Transfer of data of the double type

```
double big = 1.0; /* Big endian area */
extern int little; /* Little endian area */
little = big;; /* Transfer of double type data */
```

The result of the above code is shown below, and as the result of transferring double type data, is an error.

Allocation of a Stack to a Little Endian Area

If some of the stacks are allocated to a little endian area, behavior cannot be guaranteed.

D.2 Assembler (fasm911)

The following items regarding little endian areas need to be noted when the FR series assembly language is used for programming:

- Section
- Data access

Section

A little endian area is primarily intended to be used for data exchange with CPUs with little endian lines. Consequently, define a little endian area as a data section without an initial value.

If a code, stack, or data section with an initial value is specified in a little endian area, the MB91301 series access operation cannot be guaranteed.

[Example]

```
/* Section definition of a correct little endian area */
    .SECTION Little_Area, DATA, ALIGN=4
Little_Word:
    .RES.W 1
Little_Half:
    .RES.H 1
Little_Byte:
    .RES.B 1
```

Data Access

When data in a little endian area is accessed, the data values can be coded without awareness of the endian method used. However, access to data in a little endian area must be performed using the same size as the data size.

[Example]

	LDI	#0x01020304, r0
	LDI	#Little_Word, r1
	LDI	#0x0102, r2
	LDI	#Little_Half, r3
	LDI	#0x01, r4
	LDI	#Little_Byte, r5
/*	Access ST	32-bit data using the ST instruction (or the LD instruction). */ r0, @r1
/*	Access STH	16-bit data using the STH instruction (or the LDH instruction). */ r2, @r3 $$
/*	Access STB	8-bit data using the STB instruction (or the LDB instruction). */ r4, $\mbox{@r5}$

If data is accessed with the MB91301 series using a size that is different from the data size, the data values cannot be guaranteed. For example, if two consecutive 16-bit data items are accessed using a 32-bit access instruction, the data value cannot be guaranteed.

D.3 Linker (flnk911)

The following items related to section allocation for linking need to be noted when a program that uses a little endian area is used:

- Restriction on section types
- Lack of error detection

Restriction on Section Types

Only data sections without an initial value can be allocated to a little endian area.

If a data section, stack section, or code section with an initial value is allocated to a little endian area, program operation cannot be guaranteed because arithmetic processing, such as an address resolution, is performed internally by the linker using the big endian method.

Lack of Error Detection

Since the linker does not recognize little endian areas, the linker does not issue an error message if allocation violating the above restriction is performed n. Use the linker only after carefully studying the sections that will be allocated to little endian areas.

D.4 Debugger (sim911, eml911, mon911)

This section provides notes on using a simulator debugger or emulator debugger/ monitor debugger.

Simulator Debugger

There is no memory space specification command that can indicate a little endian area.

As a result, memory management commands and instructions executed to manage memory are handled as if they were big endian.

Emulator Debugger/Monitor Debugger

Note that, if a little endian area is accessed using the following commands, the data values are not handled as normal values:

O The set memory, show memory, enter, examine, and set watch commands

When floating-point (single or double) data is processed, the specified value is neither set nor displayed.

${\rm O}\,$ The search memory command

When halfword or word data is searched, the specified value is not used in the search.

O Line assembly and disassembly (including the disassembly display in the source window)

Normal instruction codes can neither be set nor displayed.

Do not allocate any instruction codes to a little endian area.

O The call and show call commands

If a stack area is placed in a little endian area, normal operation cannot be expected. Do not allocate a stack area to a little endian area.

APPENDIX E INSTRUCTION LISTS

This section provides lists of the FR family instructions.

- E.1 "How to Read the Instruction Lists"
- E.2 "FR Family Instruction Lists"

E.1 How to Read the Instruction Lists

Before the lists are presented, the following items are explained to make the lists easier to understand:

- How to read the instruction lists
- Addressing mode symbols
- Instruction format

How to Read the Instruction Lists

Mne	monic	Туре	OP	CYCLE	NZVC	Operation	Remarks
ADD *ADD	Rj, Rj #s5, Rj	A C	AG A4	1 1	0000 0000	Ri + Rj> Rj Ri + s5> Ri	-
	,	,	, ,	,	,	,	
1.	2.	3.	4.	5.	6.	7.	

- 1. Instruction name.
 - An asterisk (*) indicates an extended instruction that is not contained in the CPU specifications and is obtained by extension of or addition to the assembler.
- 2. Symbols indicating addressing modes that can be specified for the operand.
 - For the meaning of symbols, see "Addressing Mode Symbols".
- 3. Instruction format.
- 4. Instruction code in hexadecimal notation.
- 5. Number of machine cycles.
 - a: Memory access cycle that may be extended by the Ready function.
 - b: Memory access cycle that may be extended by the Ready function. However, the cycle is interlocked if a direct instruction references a register intended for an LD operation, increasing the number of execution cycles by 1.
 - c: Interlocked if the direct instruction is an instruction that reads or writes to R15, SSP, or USP, or an instruction in instruction format A. The number of execution cycles increases by 1 or 2.
 However, if "ST Bs @R15" instruction accesses to special registers (TBR, BR, USP)

However, if "ST Rs,@R15" instruction accesses to special ragisters (TBR, RP, USP, SSP,MDH, MDL) immediately after DIV1 instruction, the cycle always be interlocked and the number of execution cycles increases to 2.

- d: Interlocked if the direct instruction references MDH/MDL. The number of execution cycles increases to 2.
- The minimum for a, b, c, and d is 1 cycle.
- 6. Indicates a flag change.
 - Flag change C: Change -: No change 0: Clear 1: Set
 - Flag meaning N: Negative flag Z: Zero flag V: Overflow flag C: Carry flag
- 7. Instruction operation.

■ Addressing Mode Symbols

Table E.1-1 Explanation of Addressing Mode Symbols

Symbol	Meaning
Ri	Register direct (R0 to R15, AC, FP, SP)
Rj	Register direct (R0 to R15, AC, FP, SP)
R13	Register direct (R13, AC)
Ps	Register direct (program status register)
Rs	Register direct (TBR, RP, SSP, USP, MDH, MDL)
CRi	Register direct (CR0 to CR15)
CRj	Register direct (CR0 to CR15)
#i8	Unsigned 8-bit immediate (-128 to 255) Note: -128 to -1 is handled as 128 to 255.
#i20	Unsigned 20-bit immediate (-0X80000b to 0XFFFFF) Note: -0X7FFFF to -1 is handled as 0X7FFFF to 0XFFFFF.
#i32	Unsigned 32-bit immediate (-0X80000000 to 0XFFFFFFF) Note: -0X80000000 to -1 is handled as 0X80000000 to 0XFFFFFFFF.
#s5	Signed 5-bit immediate (-16 to 15)
#s10	Signed 10-bit immediate (-512 to 508, multiples of 4 only)
#u4	Unsigned 4-bit immediate (0 to 15)
#u5	Unsigned 5-bit immediate (0 to 31)
#u8	Unsigned 8-bit immediate (0 to 255)
#u10	Unsigned 10-bit immediate (0 to 1020, multiples of 4 only)
@dir8	Unsigned 8-bit direct address (0 to 0XFF)
@dir9	Unsigned 9-bit direct address (0 to 0X1FE, multiple of 2 only)
@dir10	Unsigned 10-bit direct address (0 to 0X3FC, multiples of 4 only)
label9	Signed 9-bit branch address (-0X100 to 0XFC, multiples of 2 only)
label12	Signed 12-bit branch address (-0X800 to 0X7FC, multiples of 2 only)
label20	Signed 20-bit branch address (-0X80000 to 0X7FFFF)
label32	Signed 32-bit branch address (-0X80000000 to 0X7FFFFFF)
@Ri	Register indirect (R0 to R15, AC, FP, SP)
@Rj	Register indirect (R0 to R15, AC, FP, SP)
@(R13,Rj)	Register relative indirect (Rj: R0 to R15, AC, FP, SP)
@(R14,disp10)	Register relative indirect (disp10: -0X200 to 0X1FC, multiples of 4 only)
@(R14,disp9)	Register relative indirect (disp9: -0X100 to 0XFE multiples of 2 only)

Symbol	Meaning
@(R14,disp8)	Register relative indirect (disp8: -0X80 to 0X7F)
@(R15,udisp6)	Register relative indirect (udisp6: 0 to 60, multiples of 4 only)
@Ri+	Register indirect with post-increment (R0 to R15, AC, FP, SP)
@R13+	Register indirect with post-increment (R13, AC)
@SP+	Stack pop
@-SP	Stack push
(reglist)	Register list

Table E.1-1 Explanation of Addressing Mode Symbols (Continued)

APPENDIX

Instruction Format

Table E.1-2 Instruction Format

Туре	Instruction format							
A		MSB OP			LSB Ri			
		8		4	4	1		
В		OP	i8/	08	Ri			
		4		8				
С		OF	0	u4/m4	Ri			
		8		4	4			
		ADD, ADD	N, CMP,	LSL, LSR,	ASR			
C'		OP		s5/u5	Ri			
		7		5	4			
D		OP		u8/rel8/dir/ reglist				
		8		8	}	-		
	r					1		
E		OP)	SUB-OP	Ri]		
		8		4	4			
						1		
F		OP		rel11]		
		5		11				

E.2 FR Family Instruction Lists

The FR family instruction lists are presented in the order listed below.

FR Family Instruction Lists

Table E.2-1 "Add-Subtract Instructions"

Table E.2-2 "Compare Instructions"

Table E.2-3 "Logic Instructions"

Table E.2-4 "Bit Manipulation Instructions"

Table E.2-5 "Multiply Instructions"

Table E.2-6 "Shift Instructions"

Table E.2-7 "Immediate Set/16-bit/32-bit Immediate Transfer Instructions"

Table E.2-8 "Memory Load Instructions"

Table E.2-9 "Memory Store Instructions"

Table E.2-10 "Register-to-Register Transfer Instructions"

Table E.2-11 "Normal Branch (No Delay) Instructions"

Table E.2-12 "Delayed Branch Instructions"

Table E.2-13 "Other Instructions"

Table E.2-14 "20-Bit Normal Branch Macro Instructions"

Table E.2-15 "20-Bit Delayed Branch Macro Instructions"

Table E.2-16 "32-Bit Normal Branch Macro Instructions"

Table E.2-17 "32-Bit Delayed Branch Macro Instructions"

Table E.2-18 "Direct Addressing Instructions"

Table E.2-19 "Resource Instructions"

Table E.2-20 "Coprocessor control Instructions"

■ Add-Subtract Instructions

Table E.2-1 Add-Subtract Instructions

Mnemonic	Туре	OP	CYCLE	NZVC	Operation	Remarks
ADD Rj, Ri	А	A6	1	CCCC	Ri + Rj> Ri	
*ADD #s5, Ri	C'	A4	1	CCCC	Ri + s5> Ri	The assembler treats the highest-order bit as the sign.
ADD #u4, Ri	С	A4	1	CCCC	Ri + extu(i4)> Ri	Zero extension
ADD2 #u4, Ris	С	A5	1	CCCC	Ri + extu(i4)> Ri	Minus extension
ADDC Rj, Ri	A	A7	1	CCCC	Ri + Rj + c> Ri	Addition with carry
ADDN Rj, Ri	А	A2	1		Ri + Rj> Ri	
*ADDN #s5, Ri	C'	A0	1		Ri + s5> Ri	The assembler treats the highest-order bit as the sign.
ADDN #u4, Ri	С	A0	1		Ri + extu(i4)> Ri	Zero extension
ADDN2 #u4, Ri	С	A1	1		Ri + extu(i4)> Ri	Minus extension
SUB Rj, Ri	А	AC	1	CCCC	Ri - Rj> Ri	
SUBC Rj, Ri	А	AD	1	CCCC	Ri - Rj - c> Ri	Addition with carry
SUBN Rj, Ri	А	AE	1		Ri - Rj> Ri	

■ Compare Instructions

Table E.2-2 Compare Instructions

Mnemonic	Туре	OP	CYCLE	NZVC	Operation	Remarks
CMP Rj, Ri	А	AA	1	CCCC	Ri + Rj	
*CMP #s5, Ri	C'	A8	1	CCCC	Ri + s5	The assembler treats the highest-order bit as the sign.
CMP #u4, Ri	С	A8	1	CCCC	Ri + extu(i4)	Zero extension
CMP2 #u4, Ri	С	A9	1	CCCC	Ri + extu(i4)	Minus extension

■ Logic Instructions

Mnemonic	Туре	OP	CYCLE	NZVC	Operation	Remarks
AND Rj, Ri	A	82	1	CC	Ri &= Rj	Word
AND Rj, @Ri*	А	84	1+2a	CC	(Ri) &= Rj	Word
ANDH Rj, @Ri*	А	85	1+2a	CC	(Ri) &= Rj	Halfword
ANDB Rj, @Ri*	А	86	1+2a	CC	(Ri) &= Rj	Byte
OR Rj, Ri	А	92	1	CC	Ri l = Rj	Word
OR Rj, @Ri*	А	94	1+2a	CC	(Ri) = Rj	Word
ORH Rj, @Ri*	А	95	1+2a	CC	(Ri) = Rj	Halfword
ORB Rj, @Ri*	А	96	1+2a	CC	(Ri) = Rj	Byte
EOR Rj, Ri	А	9A	1	CC	Ri ^ = Rj	Word
EOR Rj, @Ri*	А	9C	1+2a	CC	(Ri) ^ = Rj	Word
EORH Rj, @Ri*	А	9D	1+2a	CC	(Ri) ^ = Rj	Halfword
EORB Rj, @Ri*	А	9E	1+2a	CC	(Ri) ^ = Rj	Byte

Table E.2-3 Logic Instructions

*: To code these instructions in the assembler, set Rj to a general - purpose register other than R15.

APPENDIX

Bit Manipulation Instructions

Table E.2-4 Bit Manipulation Instructions	Table E.2-4	Bit Manipulation	Instructions
---	-------------	-------------------------	--------------

Mnemonic	Туре	OP	CYCLE	NZVC	Operation	Remarks
BANDL #u4, @Ri	С	80	1+2a		(Ri)&=(0xF0+u4)	Low-order 4 bits are manipulated.
BANDH #u4, @Ri	С	81	1+2a		(Ri)&=((u4<<4)+0x0F)	High-order 4 bits are manipulated.
*BAND #u8, @Ri ^{*1}					(Ri)&=u8	
BORL #u4, @Ri	С	90	1+2a		(Ri) = u4	Low-order 4 bits are manipulated.
BORLH #u4, @Ri	С	91	1+2a		(Ri) = (u4<<4)	High-order 4 bits are manipulated.
*BOR #u8, @Ri ^{*2}					(Ri) = u8	
BEORL #u4, @Ri	С	98	1+2a		(Ri) ^ = u4	Low-order 4 bits are manipulated.
BEORH #u4, @Ri	С	99	1+2a		(Ri) ^ = (u4<<4)	High-order 4 bits are manipulated.
*BEOR #u8, @Ri ^{*3}					(Ri) ^ = u8	
BTSTL #u4, @Ri	С	88	2+a	0C	(Ri) & u4	Low-order 4 bits are manipulated.
BTSTH #u4, @Ri	С	89	2+a	CC	(Ri) & (u4<<4)	High-order 4 bits are manipulated.

*1: The assembler generates BANDL if the bit is set at u8&0x0F, and BANDH if the bit is set at u8&0xF0. In some cases, both BANDL and BANDH may be generated.

*2: The assembler generates BORL if the bit is set at u8&0x0F, and BORH if the bit is set at u8&0xF0. In some cases, both BORL and BORH are generated.

*3: The assembler generates BEORL if the bit is set at u8&0x0F, and BEORH if the bit is set at u8&0xF0. In some cases, both BEORL and BEORH are generated.

Multiply Instructions

Mnemonic	Туре	OP	CYCLE	NZVC	Operation	Remarks
MUL Rj,Ri	А	AF	5	CCC-	Ri * Rj> MDH,MDL	32bit*32bit=64bit
MULU Rj,Ri	А	AB	5	CCC-	Ri * Rj> MDH,MDL	No sign
MULH Rj,Ri	А	BF	3	CC	Ri * Rj> MDL	16bit*16bit=32bit
MULUH Rj,Ri	А	BB	3	CC	Ri * Rj> MDL	No sign
DIV0S Ri	E	97-4	1			Step operation
DIV0U Ri	Е	97-5	1			32bit/32bit=32bit
DIV1 Ri	E	97-6	d	-C-C		
DIV2 Ri	E	97-7	1	-C-C		
DIV3	E	9F-6	1			
DIV4S	Е	9F-7	1			
*DIV Ri ^{*1}			36	-C-C	MDL / Ri> MDL, MDL % Ri> MDH	
*DIVU Ri ^{*2}			33	-C-C	MDL / Ri> MDL, MDL % Ri> MDH	

Table E.2-5 Multiply Instructions

*1: DIV0S, DIV1 x 32, DIV2, DIV3, or DIV4S is generated. The instruction code length becomes 72 bytes. *2: DIV0U or DIV1 x 32 is generated. The instruction code length becomes 66 bytes.

Shift Instructions

Table E.2-6 Shift Instructions

Mnemonic	Туре	OP	CYCLE	NZVC	Operation	Remarks
LSL Rj, Ri	A	B6	1	CC-C	Ri << Rj> Ri	Logical shift
*LSL #u5, Ri (u5:0 to 31)	C'	B4	1	CC-C	Ri << u5> Ri	
LSL #u4, Ri	С	B4	1	CC-C	Ri << u4> Ri	
LSL2 #u4, Ri	С	B5	1	CC-C	Ri <<(u4+16)> Ri	
LSR Rj, Ri	A	B2	1	CC-C	Ri >> Rj> Ri	Logical shift
*LSR #u5, Ri (u5:0 to 31)	C'	B0	1	CC-C	Ri >> u5> Ri	
LSR #u4, Ri	С	B0	1	CC-C	Ri >> u4> Ri	
LSR2 #u4, Ri	С	B1	1	CC-C	Ri >>(u4+16)> Ri	
ASR Rj, Ri	A	BA	1	CC-C	Ri >> Rj> Ri	Arithmetic shift
*ASR #u5, Ri (u5:0 to 31)	C'	B8	1	CC-C	Ri >> u5> Ri	
ASR #u4, Ri	С	B8	1	CC-C	Ri >> u4> Ri	
ASR2 #u4, Ri	С	B9	1	CC-C	Ri >>(u4+16)> Ri	

■ Immediate Set/16-bit/32-bit Immediate Transfer Instructions

Table E.2-7 Immediate Set/16-bit/32-bit Immediate Transfer Instructions

Mnemonic	Туре	OP	CYCLE	NZVC	Operation	Remarks
LDI:32 #i32, Ri	E	9F-8	3		i32> Ri	
LDI:20 #i20, Ri	С	9B	2		i20> Ri	High-order 12 bits are zero-extended.
LDI:8 #i8, Ri	В	CO	1		i8> Ri	High-order 24 bits are zero- extended.
LDI # {i8 i20 i32} ,Ri					{i8 i20 i32}> Ri	

*: If the immediate data is represented as absolute values, the assembler selects automatically from i8, i20, and i32.

If immediate data contains a relative value or external reference symbol, i32 is selected.

Memory Load Instructions

	Mnemonic	Туре	ОР	CYCLE	NZVC	Operation	Remarks
LD	@Rj, Ri	А	04	b		(Rj)> Ri	
LD	@(R13,Rj), Ri	А	00	b		(R13+Rj)> Ri	
LD	@(R14,disp10), Ri	В	20	b		(R14+disp10)> Ri	
LD	@(R15,udisp6), Ri	С	03	b		(R15+udisp6)> Ri	
LD	@R15+, Ri	Е	07-0	b		(R15)> Ri,R15+=4	
LD	@R15+, Rs	Е	07-8	b		(R15)> Rs, R15+=4	Rs: Special register *
LD	@R15+, PS	Е	07-9	1+a+b	CCCC	(R15)> PS, R15+=4	
LDU	H @Rj, Ri	А	05	b		(Rj)>Ri	Zero extension
LDUH	H @(R13,Rj), Ri	А	01	b		(R13+Rj)>Ri	Zero extension
LDU	H @(R14,disp9), Ri	В	40	b		(R14+disp9)>Ri	Zero extension
LDUE	3 @Rj, Ri	А	06	b		(Rj)>Ri	Zero extension
LDUE	3 @(R13,Rj), Ri	А	02	b		(R13+Rj)>Ri	Zero extension
LDUE	8 @(R14,disp8), Ri	В	60	b		(R14+disp8)>Ri	Zero extension

Table E.2-8 Memory Load Instructions

*: Special register Rs: TBR, RP, USP, SSP, MDH, and MDL Note:

In the o8 and o4 fields of the hardware specifications, the assembler calculates values and sets them as shown below:

disp10/4 --> o8, disp9/2 --> o8, disp8 --> o8; disp10, disp9, and disp8 have a sign. udisp6/4 --> o4; udisp6 has no sign.

Memory Store Instructions

Table E.2-9 Memory Store Instructions

Mnemonic	Туре	OP	CYCLE	NZVC	Operation	Remarks
ST Ri, @Rj	Α	14	а		Ri> (Rj)	Word
ST Ri, @(R13,Rj)	Α	10	а		Ri> (R13+Rj)	Word
ST Ri, @(R14,disp10)	В	30	а		Ri> (R14+disp10)	Word
ST Ri, @(R15,udisp6)	С	13	а		Ri> (R15+udisp6)	
ST Ri, @-R15	Е	17-0	а		R15-=4,Ri> (R15)	
ST Rs, @-R15	Е	17-8	а		R15-=4, Rs> (R15)	Rs: Special register *
ST PS, @-R15	E	17-9	а		R15-=4, PS> (R15)	
STH Ri, @Rj	А	15	а		Ri> (Rj)	Halfword
STH Ri, @(R13,Rj)	Α	11	а		Ri> (R13+Rj)	Halfword
STH Ri, @(R14,disp9)	В	50	а		Ri> (R14+disp9)	Halfword
STB Ri, @Rj	Α	16	а		Ri> (Rj)	Byte
STB Ri, @(R13,Rj)	Α	12	а		Ri> (R13+Rj)	Byte
STB Ri, @(R14,disp8)	В	70	а		Ri> (R14+disp8)	Byte

*: Special register Rs: TBR, RP, USP, SSP, MDH, and MDL Note:

In the o8 and o4 fields of the hardware specifications, the assembler calculates values and sets them as shown below:

disp10/4 --> o8, disp9/2 --> o8, disp8 --> o8; disp10, disp9, and disp8 have a sign. udisp6/4 --> o4; udisp6 has no sign.

Register-to-Register Transfer Instructions

Table E.2-10 Register-to-Register Transfer Instructions

Mnemonic	Туре	OP	CYCLE	NZVC	Operation	Remarks
MOV Rj, Ri	A	8B	1		Rj> Ri	Transfer between general- purpose registers
MOV Rs, Ri	А	B7	1		Rs> Ri	Rs: Special register *
MOV Ri, Rs	А	B3	1		Ri> Rs	Rs: Special register *
MOV PS, Ri	Е	17-1	1		PS> Ri	
MOV Ri, PS	Е	07-1	с	CCCC	Ri> PS	

*: Special register Rs: TBR, RP, USP, SSP, MDH, and MDL

Normal Branch (No Delay) Instructions

Mnemonic	Туре	ОР	CYCLE	NZVC	Operation	Remarks
JMP @Ri	E	97-0	2		Ri> PC	
CALL label12	F	D0	2		PC+2>RP , PC+2+(label12-PC-2)>PC	
CALL @Ri	E	97-1	2		PC+2>RP ,Ri>PC	
RET	E	97-2	2		RP> PC	Return
INT #u8	D	AC	3+3a	CCCC	SSP-=4,PS> (SSP), SSP-=4,PC+2> (SSP), 0> I flag,0> S flag, (TBR+0x3FC-u8x4)> PC	
INTE	E	9F-3	3+3a		SSP-=4,PS> (SSP), SSP-=4,PC+2> (SSP), 0> S flag, (TBR+0x3D8)>PC	For emulator
RETI	E	97-3	2+2a	CCCC	(R15)> PC,R15-=4, (R15)> PS,R15-=4	
BRA label9	D	E0	2		PC+2+(label9-PC-2)>PC	
BNO label9	D	E1	1		No branch	
BEQ label9	D	E2	2/1		if(Z==1) then PC+2+(label9-PC-2)>PC	
BNE label9	D	E3	2/1		↑ s/Z==0	
BC label9	D	E4	2/1		↑ s/C==1	
BNC label9	D	E5	2/1		↑ s/C==0	
BN label9	D	E6	2/1		↑ s/N==1	
BP label9	D	E7	2/1		↑ s/N==0	
BV label9	D	E8	2/1		↑ s/V==1	
BNV label9	D	E9	2/1		↑ s/V==0	
BLT label9	D	EA	2/1		↑ s/V xor N==1	
BGE label9	D	EB	2/1		↑ s/V xor N==0	
BLE label9	D	EC	2/1		\uparrow s/(V xor N) or Z==1	
BGT label9	D	ED	2/1		↑ s/(V xor N) or Z==0	
BLS label9	D	EE	2/1		↑ s/C or Z==1	
BHI label9	D	EF	2/1		↑ s/C or Z==0	

 Table E.2-11 Normal Branch (No Delay) Instructions

Notes:

• "2/1" under CYCLE indicates 2 when branching occurs and 1 when branching does not occur.

 In the rel11 and rel8 fields of the hardware specifications, the assembler calculates values and sets them as shown below: (label12-PC-2)/2 --> rel11, (label9-PC-2)/2 --> rel8; label12 and label9 have a sign.

• To execute the RETI instruction, the S flag must be 0.

Delayed Branch Instructions

Table E.2-12 Delayed Branch Instructions

Mnemonic	Туре	OP	CYCLE	NZVC	Operation	Remarks
JMP:D @Ri	E	9F-0	1		Ri> PC	
CALL:D label12	F	D8	1		PC+4> RP , PC+2+(label12-PC-2)> PC	
CALL:D @Ri	E	9F-1	1		PC+4> RP ,Ri> PC	
RET:D	E	9F-2	1		RP> PC	Return
BRA:D label9	D	F0	1		PC+2+(label9-PC-2)>PC	
BNO:D label9	D	F1	1		No branch	
BEQ:D label9	D	F2	1		if(Z==1) then PC+2+(label9-PC-2)>PC	
BNE:D label9	D	F3	1		↑ s/Z==0	
BC:D label9	D	F4	1		↑ s/C==1	
BNC:D label9	D	F5	1		↑ s/C==0	
BN:D label9	D	F6	1		↑ s/N==1	
BP:D label9	D	F7	1		↑ s/N==0	
BV:D label9	D	F8	1		↑ s/V==1	
BNV:D label9	D	F9	1		↑ s/V==0	
BLT:D label9	D	FA	1		↑ s/V xor N==1	
BGE:D label9	D	FB	1		↑ s/V xor N==0	
BLE:D label9	D	FC	1		↑ s/(V xor N) or Z==1	
BGT:D label9	D	FD	1		↑ s/(V xor N) or Z==0	
BLS:D label9	D	FE	1		↑ s/C or Z==1	
BHI:D label9	D	FF	1		↑ s/C or Z==0	

Note:

• In the rel11 and rel8 fields of the hardware specifications, the assembler calculates values and sets them as shown below:

(label12-PC-2)/2 --> rel11, (label9-PC-2)/2 --> rel8; label12 and label9 have a sign.

• A delayed branch always occurs after the next instruction (delay slot) is executed.

• Instructions that can be placed in the delay slot are all 1-cycle, a-, b-, c-, and d-cycle instructions. Multicycle instructions cannot be placed in the delay slot.

Other Instructions

Table E.2-13 Other Instructions

Mnemonic	Туре	OP	CYCLE	NZVC	Operation	Remarks
NOP	E	9F-A	1		No change	
ANDCCR #u8	D	83	с	CCCC	CCR and u8> CCR	
ORCCR #u8	D	93	с	cccc	CCR or u8> CCR	
STILM #u8	D	87	1		i8> ILM	ILM immediate set
ADDSP #s10 ^{*1}	D	A3	1		R15 += s10	ADD SP instruction
EXTSB Ri	E	97-8	1		Sign extension 8> 32bit	
EXTUB Ri	Е	97-9	1		Zero extension 8> 32bit	
EXTSH Ri	Е	97-A	1		Sign extension 16> 32bit	
EXTUH Ri	Е	97-B	1		Zero extension 16> 32bit	
LDM0 (reglist)	D	8C			(R15)> reglist, R15 increment	Load multi R0-R7
LDM1 (reglist)	D	8D			(R15)> reglist, R15 increment	Load multi R8-R15
*LDM (reglist) ^{*2}					(R15)> reglist, R15 increment	Load multi R0-R15
STM0 (reglist)	D	8E			R15 decrement, reglist> (R15)	Store multi R0-R7
STM1 (reglist)	D	8F			R15 decrement, reglist> (R15)	Store multi R8-R15
*STM (reglist) ^{*3}					R15 decrement, reglist> (R15)	Store multi R0-R15
ENTER #u10 ^{*4}	D	0F	1+a		R14> (R15 - 4), R15 - 4> R14, R15 - u10> R15	Entry processing of a function
LEAVE	E	9F-9	b		R14 + 4> R15, (R15 - 4)> R14	Exit processing of a function
XCHB @Rj, Ri	A	8A	2a		Ri> TEMP (Rj)> Ri TEMP> (Rj)	For semaphore management Byte data

*1: For s10, the assembler calculates s10/4 and then changes to s8 to set a value. s10 has a sign.

*2: If any of R0 to R7 is specified in reglist, LDM0 is generated. If any of R8 to R15 is generated, LDM1 is generated. In some cases, both LDM0 and LDM1 are generated.

*3: If any of R0 to R7 is specified in reglist, STM0 is generated. If any of R8 to R15 is generated, STM1 is generated. In some cases, both STM0 and STM1 are generated.

*4: For u10, the assembler calculates u10/4 and then changes to u8 to set a value. u10 has a sign.

Note:

 The number of execution cycles of LDM0(reglist) and LDM1(reglist) can be calculated as a*(n-1)+b+1 cycles if the number of specified registers is n.

 The number of execution cycles of STM0(reglist) and STM1(reglist) can be calculated as a*n+1 cycles if the number of specified registers is n.

APPENDIX

■ 20-Bit Normal Branch Macro Instructions

Table E.2-14	20-Bit Normal	Branch Macro	Instructions
--------------	---------------	---------------------	--------------

М	nemonic	Operation	Remarks
*CALL20	label20,Ri	Address of the next instruction> RP, label20> PC	Ri: Temporary register (See Reference 1)
*BRA20	label20,Ri	label20> PC	Ri: Temporary register (See Reference 2)
*BEQ20	label20,Ri	if(Z==1) then label20> PC	Ri: Temporary register (See Reference 3)
*BNE20	label20,Ri	↑ s/Z==0	↑ (International Content of the second seco
*BC20	label20,Ri	↑ s/C==1	↑ (International Content of the second seco
*BNC20	label20,Ri	↑ s/C==0	↑ (
*BN20	label20,Ri	↑ s/N==1	↑ (International Content of Cont
*BP20	label20,Ri	↑ s/N==0	↑ (
*BV20	label20,Ri	↑ s/V==1	↑ (
*BNV20	label20,Ri	↑ s/V==0	↑ (
*BLT20	label20,Ri	↑ s/V xor N==1	↑ (
*BGE20	label20,Ri	↑ s/V xor N==0	↑ (International Content of the second seco
*BLE20	label20,Ri	\uparrow s/(V xor N) or Z==1	↑
*BGT20	label20,Ri	\uparrow s/(V xor N) or Z==0	↑
*BLS20	label20,Ri	↑ s/C or Z==1	↑ (
*BHI20	label20,Ri	↑ s/C or Z==0	1

[Reference 1] CALL20

1) If label20-PC-2 is between -0x800 and +0x7fe, create an instruction as shown below:

CALL label12

2) If label20-PC-2 is outside the range in 1) or contains an external reference symbol, create an instruction as shown below: LDI:20 #label20,Ri

CALL @Ri

[Reference 2] BRA20

1) If label20-PC-2 is between -0x100 and +0xfe, create an instruction as shown below:

BRA label9

2) If label20-PC-2 is outside the range in 1) or contains an external reference symbol, create an instruction as shown below: LDI:20 #label20,Ri

JMP @Ri

[Reference 3] Bcc20

1) If label20-PC-2 is between -0x100 and +0xfe, create an instruction as shown below:

Bcc label9

2) If label20-PC-2 is outside the range in 1) or contains an external reference symbol, create an instruction as shown below: Bxcc false xcc is the opposite condition of cc.

LDI:20 #label20,Ri

JMP @Ri

■ 20-Bit Delayed Branch Macro Instructions

label20,Ri	Address of the next instruction> RP,	
	label20> PC	Ri: Temporary register (See Reference 1)
label20,Ri	label20> PC	Ri: Temporary register (See Reference 2)
label20,Ri	if(Z==1) then label20> PC	Ri: Temporary register (See Reference 3)
label20,Ri	↑ s/Z==0	↑ ↑
abel20,Ri	↑ s/C==1	↑ ↑
label20,Ri	↑ s/C==0	↑ (
abel20,Ri	↑ s/N==1	↑ T
abel20,Ri	↑ s/N==0	↑ (
abel20,Ri	↑ s/V==1	↑ ↑
label20,Ri	↑ s/V==0	1
label20,Ri	↑ s/V xor N==1	1
label20,Ri	↑ s/V xor N==0	1
label20,Ri	↑ s/(V xor N) or Z==1	Î ↑
label20,Ri	\uparrow s/(V xor N) or Z==0	1
label20,Ri	↑ s/C or Z==1	1
abel20,Ri	↑ s/C or Z==0	1
	abel20,Ri abel20,Ri abel20,Ri abel20,Ri abel20,Ri abel20,Ri abel20,Ri abel20,Ri abel20,Ri abel20,Ri abel20,Ri abel20,Ri	abel20,Riif(Z==1) then label20> PCabel20,Ri \uparrow s/Z==0abel20,Ri \uparrow s/C==1abel20,Ri \uparrow s/C==0abel20,Ri \uparrow s/N==1abel20,Ri \uparrow s/N==0abel20,Ri \uparrow s/V==1abel20,Ri \uparrow s/V==0abel20,Ri \uparrow s/V==0abel20,Ri \uparrow s/V xor N==1abel20,Ri \uparrow s/V xor N==1abel20,Ri \uparrow s/V xor N==0abel20,Ri \uparrow s/(V xor N) or Z==1abel20,Ri \uparrow s/(V xor N) or Z==0abel20,Ri \uparrow s/C or Z==1

Table E.2-15 20-Bit Delayed Branch Macro Instructions

[Reference 1] CALL20:D

1) If label20-PC-2 is between -0x800 and +0x7fe, create an instruction as shown below:

CALL:D label12

2) If label20-PC-2 is outside the range in 1) or contains an external reference symbol, create an instruction as shown below:

LDI:20 #label20,Ri

CALL:D @Ri

[Reference 2] BRA20

- 1) If label20-PC-2 is between -0x100 and +0xfe, create an instruction as shown below:
- BRA :D label9
- 2) If label20-PC-2 is outside the range in 1) or contains an external reference symbol, create an instruction as shown below:

LDI:20 #label20,Ri

JMP:D @Ri

[Reference 3] Bcc20:D

1) If label20-PC-2 is between -0x100 and +0xfe, create an instruction as shown below:

Bcc:D label9

2) If label20-PC-2 is outside the range in 1) or contains an external reference symbol, create an instruction as shown below:

Bxcc false xcc is the opposite condition of cc.

LDI:20 #label20,Ri

JMP:D @Ri

APPENDIX

■ 32-Bit Normal Branch Macro Instructions

Mnemonic	Operation	Remarks
*CALL32 label32,Ri	Address of the next instruction> RP, label20> PC	Ri: Temporary register (See Reference 1)
*BRA32 label32,Ri	label32> PC	Ri: Temporary register (See Reference 2)
*BEQ32 label32,Ri	if(Z==1) then label20> PC	Ri: Temporary register (See Reference 3)
*BNE32 label32,Ri	↑ s/Z==0	1
*BC32 label32,Ri	↑ s/C==1	↑ (
*BNC32 label32,Ri	↑ s/C==0	↑ (
*BN32 label32,Ri	↑ s/N==1	↑ (
*BP32 label32,Ri	↑ s/N==0	↑ (
*BV32 label32,Ri	↑ s/V==1	1
*BNV32 label32,Ri	↑ s/V==0	1
*BLT32 label32,Ri	↑ s/V xor N==1	↑ (
*BGE32 label32,Ri	↑ s/V xor N==0	1
*BLE32 label32,Ri	\uparrow s/(V xor N) or Z==1	1
*BGT32 label32,Ri	\uparrow s/(V xor N) or Z==0	↑ (
*BLS32 label32,Ri	↑ s/C or Z==1	↑ (
*BHI32 label32,Ri	↑ s/C or Z==0	1

Table E.2-16 32-Bit Normal Branch Macro Instructions

[Reference 1] CALL32

1) If label32-PC-2 is between -0x800 and +0x7fe, create an instruction as shown below: CALL label12

- 2) If label32-PC-2 is outside the range in 1) or contains an external reference symbol, create an instruction as shown below:
 - LDI:32 #label32,Ri

CALL @Ri

[Reference 2] BRA32

1) If label32-PC-2 is between -0x100 and +0xfe, create an instruction as shown below:

```
BRA label9
```

- 2) If label32-PC-2 is outside the range in 1) or contains an external reference symbol, create an instruction as shown below:
 - LDI:32 #label32,Ri

JMP @Ri

[Reference 3] Bcc32

1) If label32-PC-2 is between -0x100 and +0xfe, create an instruction as shown below:

Bcc label9

2) If label32-PC-2 is outside the range in 1) or contains an external reference symbol, create an instruction as shown below:

Bxcc false xcc is the opposite condition of cc.

LDI:32 #label32,Ri

JMP @Ri32

■ 32-Bit Delayed Branch Macro Instructions

Mnemonic	Operation	Remarks
*CALL32:D label32,Ri	Address of the next instruction> RP, label20> PC	Ri: Temporary register (See Reference 1)
*BRA32:D label32,Ri	label32> PC	Ri: Temporary register (See Reference 2)
*BEQ32:D label32,Ri	if(Z==1) then label20> PC	Ri: Temporary register (See Reference 3)
*BNE32:D label32,Ri	↑ s/Z==0	1
*BC32:D label32,Ri	↑ s/C==1	1
*BNC32:D label32,Ri	↑ s/C==0	1
*BN32:D label32,Ri	↑ s/N==1	1
*BP32:D label32,Ri	↑ s/N==0	1
*BV32:D label32,Ri	↑ s/V==1	1
*BNV32:D label32,Ri	↑ s/V==0	1
*BLT32:D label32,Ri	↑ s/V xor N==1	1
*BGE32:D label32,Ri	↑ s/V xor N==0	1
*BLE32:D label32,Ri	\uparrow s/(V xor N) or Z==1	1 1
*BGT32:D label32,Ri	↑ s/(V xor N) or Z==0	1
*BLS32:D label32,Ri	↑ s/C or Z==1	1
*BHI32:D label32,Ri	↑ s/C or Z==0	1

Table E.2-17 32-Bit Delayed Branch Macro Instructions

[Reference 1] CALL32:D

1) If label32-PC-2 is between -0x800 and +0x7fe, create an instruction as shown below: CALL:D label12

2) If label32-PC-2 is outside the range in 1) or contains an external reference symbol, create an instruction as shown below:

LDI:32 #label32,Ri

CALL:D @Ri

[Reference 2] BRA32:D

1) If label32-PC-2 is between -0x100 and +0xfe, create an instruction as shown below:

- BRA:D label9
- 2) If label32-PC-2 is outside the range in 1) or contains an external reference symbol, create an instruction as shown below:

LDI:32 #label32,Ri

JMP:D @Ri

[Reference 3] Bcc32:D

1) If label32-PC-2 is between -0x100 and +0xfe, create an instruction as shown below:

Bcc:D label9

2) If label32-PC-2 is outside the range in 1) or contains an external reference symbol, create an instruction as shown below:

Bxcc false xcc is the opposite condition of cc.

LDI:32 #label32,Ri

JMP:D @Ri32

Direct Addressing Instructions

Table E.2-18 Direct Addressing Instructions

Mnemonic	Туре	OP	CYCLE	NZVC	Operation	Remarks
DMOV @dir10, R13	D	08	b		(dir10)> R13	Word
DMOV R13, @dir10	D	18	а		R13> (dir10)	Word
DMOV @dir10, @R13+	D	0C	2a		(dir10)> (R13),R13+=4	Word
DMOV @R13+, @dir10	D	1C	2a		(R13)> (dir10),R13+=4	Word
DMOV @dir10, @-R15	D	0B	2a		R15-=4,(R15)> (dir10)	Word
DMOV @R15+, @dir10	D	1B	2a		(R15)> (dir10),R15+=4	Word
DMOVH @dir9, R13	D	09	b		(dir9)> R13	Halfword
DMOVH R13, @dir9	D	19	а		R13> (dir9)	Halfword
DMOVH @dir9, @R13+	D	0D	2a		(dir9)> (R13),R13+=2	Halfword
DMOVH @R13+, @dir9	D	1D	2a		(R13)> (dir9),R13+=2	Halfword
DMOVB @dir8, R13	D	0A	b		(dir8)> R13	Byte
DMOVB R13, @dir8	D	1A	а		R13> (dir8)	Byte
DMOVB @dir8, @R13+	D	0E	2a		(dir8)> (R13),R13++	Byte
DMOVB @R13+, @dir8	D	1E	2a		(R13)> (dir8),R13++	Byte

Note:

In the dir8, dir9, and dir10 fields, the assembler calculates values and sets them as shown below: dir8 --> dir, dir9/2 --> dir, dir10/4 --> dir; dir8, dir9, and dir10 have no sign.

Resource Instructions

Table E.2-19 Resource Instructions

Mnemonic	Туре	OP	CYCLE	NZVC	Operation	Remarks
LDRES @Ri+, #u4	С	BC	а		(Ri)> u4 resource Ri+=4	u4: Channel number
STRES #u4, @Ri+	С	BD	а		u4 resource> (Ri) Ri+=4	u4: Channel number

Note: These instructions cannot be used for the MB91301 series as it has no resource having a channel number.

Coprocessor Control Instructions

Table E.2-20	Coprocessor	Control	Instructions
--------------	-------------	---------	--------------

Mnemonic	Туре	OP	CYCLE	NZVC	Operation	Remarks
COPOP #u4, #u8, CRj, CRi	E	9F-C	2+a		Operation instruction	
COPLD #u4, #u8, Rj, CRi	Е	9F-D	1+2a		Rj> CRi	
COPST #u4, #u8, CRj, Ri	Е	9F-E	1+2a		CRj> Ri	
COPSV #u4, #u8, CRj, Ri	Е	9F-F	1+2a		CRj> Ri	No error trap

Notes:

 {CRi | CRj}:= CR0 | CR1 | CR2 | CR3 | CR4 | CR5 | CR6 | CR7 | CR8 | CR9 | CR10 | CR11 | CR12 | CR13 |CR14 | CR15 u4:= Channel specified
 2. Commencional specified

u8:= Command specified

• Since the MB91301 series has no coprocessor, this instruction cannot be used.

APPENDIX

INDEX

The index follows on the next page. This is listed in alphabetic order.

Index

Numerics

0 detection	47
0 detection data register (BSD0)44	45
1 detection44	47
1 detection data register (BSD1)44	45
10-bit slave address mask register (ITMK)46	64
10-bit slave address register (ITBA)46	64
16-bit free-run timer operation, explanation of48	35
16-bit free-run timer, count timing of48	36
16-bit free-run timer, timing to clear48	36
16-bit input capture, input timing of49	96
16-bit input capture, operation of487, 48	95
16-bit reload register (TMRLR), bit Configuration of	
16-bit reload timer is used for activation30	26
16-bit reload timer register27	
16-bit reload timer, overview of27	
16-bit reload timer, precautions on using28	32
16-bit timer register (TMR), bit configuration of 27	77
20-bit delayed branch macro instruction59	91
20-bit normal branch macro instruction59	90
2-cycle transfer (I/O -> external)25	50
2-cycle transfer (external -> I/O)24	
2-cycle transfer (internal RAM -> external I/O, RAM	
32-bit delayed branch macro instruction59	
32-bit normal branch macro instruction	
7-bit slave address mask register (ISMK)46	
7-bit slave address register (ISBA)46	36

A

A/D converter4A/D converter register350A/D converter, precaution on using360address error, occurrence of425address register specification417address register, feature of417address register, function of417addressing mode symbol576add-subtract instruction580arbitration471area configuration register 0-7 (ACR0-7), configuration of152	A/D control status register (ADCS)	
A/D converter, precaution on using	A/D converter	4
address error, occurrence of425address register specification417address register, feature of417address register, function of417addressing mode symbol576add-subtract instruction580arbitration471area configuration register 0-7 (ACR0-7),	A/D converter register	
address register specification417address register, feature of417address register, function of417addressing mode symbol576add-subtract instruction580arbitration471area configuration register 0-7 (ACR0-7),	A/D converter, precaution on using	
address register, feature of	address error, occurrence of	
address register, function of	address register specification	417
address register, function of	address register, feature of	417
add-subtract instruction		
arbitration	addressing mode symbol	576
area configuration register 0-7 (ACR0-7),	add-subtract instruction	
0 0 0	arbitration	
configuration of152	area configuration register 0-7 (ACR0-7),	
	configuration of	152

area select register (ASR0-7), function of bit in 151
area select registers 0-7 (ASR0-7), configuration of
area wait register (AWR0-7), configuration of 158

В

base clock division setting re	gister 0 (DIVR0) 125
base clock division setting re	gister 1 (DIVR1) 127
basic timing (for successive	accesses) 204
baud rate, calculation of	
bit in mode register (MODR)	, function of 141
bit manipulation instruction	
bit ordering	
bit search module (used by I	REALOS) 4
bit search module register	
bit search module, block diag	gram of 444
block diagram	7, 113, 146, 272, 310, 333, 349, 363, 387, 453
block size	
block transfer	
bock transfer, if another tran	sfer request occurs 431
branch instruction with delay	
branch instruction with delay	,
branch instruction without de	-
built-in DC-DC regulator (ME	
built-in peripheral request	
built-in RAM	
burst transfer	
bus control register (IBCR)	
bus error	
bus interface	
bus mode	
bus right, releasing	
bus status register (IBSR)	
byte access	
byte ordering	

С

cache enable register (CHER), configuration of	175
cache enable register (CHER), function of bit in	170
	175

INDEX

cache size register (ISIZE), configuration of	
cascade mode change point detection	
change point detection data register (BSDC)	
channel group	
chip select area, example of setting	
chip select area, example of setting	
chip select enable register (CSER), function of b	its in
clock control register (ICCR)	
clock disable register (IDBL)	
clock division	
clock source control register (CLKR)	
cock generation control	
communication, end of	
communication, start of	378
compare instruction	580
configuration of area select registers 0-7 (ASR0-	
configuration of data direction register (DDR)	
configuration of port function register (PFR)	
configuration of the port data register (PDR)	
connection with external device, example of	
connection with external device. example of	
continuous conversion mode	
control register	
control status register (PCNH, PCNL)	
control status register (TMCSR), bit configuratior	
control status register (TMCSR), bit function of	274
control/status register A (DMACA0 to 4)	
coprocessor control instruction	595
coprocessor error trap	
count timing of 16-bit free-run timer	
counter, operating states of	
CPU clock (CLKB)	
CSX -> RD/WE setup	221
CSX -> RD/WE Setup and RD/WE -> CSX hold	014
setting, operation timing for CSX delay setting, operation timing for	
oon delay setting, operation tinning for	213

D

DACK, and DEOP, and DREQ pin, pin function of	of
	406
data access74,	571
data bus width 186,	194
data direction register (DDR), configuration of	263
data during 2-cycle transfer, flow of	435

data during fly-by transfer, fow of	437
data format	185, 193
data length (data width)	418
data register (ADCR)	356
data register (IADR)	467
dedicated register, list of	65
delay slot, branch instruction with	76
delay slot, branch instruction without	76
delay slot, precaution on	95
delayed branch instruction	588
delayed interrupt control register (DICR)	329
delayed interrupt module register	329
delayed interrupt module, block diagram of	328
demand transfer	434
demand transfer 2-cycle transfer	412
demand transfer, timing of	440
DEOP pin output, timing of	431
description of pin function	15
detection result register (BSRR)	446
device states	131
DICR, DLYI bit of	330
difference between little endian and big endia	
direct addressing instruction	
DMA access operation	
DMA controller (DMAC) register	
DMA external interface pin	
DMA fly-by transfer (I/O -> memory)	
DMA fly-by transfer (I/O -> memory), operation for	-
DMA fly-by transfer (memory -> I/O)	240
DMA fly-by transfer (memory -> I/O), operation for	on timing
DMA transfer and interrupt	
DMA transfer during sleep	
DMA transfer request and external hold requ	
simultaneous occurrence of	
DMA transfer request during external hold	
DMA, clearing peripheral interrupt by	
DMAC (DMA controller)	
DMAC all-channel control register (DMACR)	
DMAC interrupt control	
DMAC, AC characteristic of	
double type or long double type, use of	
DRCL register	
DREQ pin input for continuing transfer over t channel, timing of	he same
DREQ pin input when a demand transfer re	
stopped, negate timing of	

DREQ pin input, minimum effective pulse width of

Е

—
each operating mode, instruction cache status in
EIT (exception, interrupt, and trap)81
EIT causes81
EIT causes to be accepted, priority of90
EIT interrupt level
EIT operation92
EIT vector table
EIT, return from81
emulator debugger/monitor debugger573
entire PPG timer, block diagram of285
error detection, lack of572
Error, stopping due to424
external bus access188
external bus clock (CLKT)111
external hold request during DMA transfer
external interrupt and NMI controller register 319
external interrupt and NMI controller, block diagram of
external interrupt request level
external interrupt request level setting register
(ELVR)
external interrupt source register (EIRR)
external interrupt, operating procedure for
external interrupt, operation of
external transfer request pin410
external wait cycle timing210
external wait, with220
external wait, without219

F

feature	450
FPT-144P-M12, external dimension of	9
FR CPU	2
FR family instruction list	.579
function of bit in mode register (MODR)	. 141

G

GCN, activating multiple channel with	305
general control register 1 (GCN1)	295
general control register 2 (GCN2)	298
general-purpose register	72

н

halfword access198	,
--------------------	---

handling of pin	36
hardware configuration	86
hardware standby after power-on (MB91307B,	
MB91V307B only)	42
hold request cancellation request (HRLC) 3	43
hold request cancellation request Level setting	
register (HRCL) 3	38
hold request cancellation request sequence 3	46

I

I flag	83
I/O map	536
I/O port	
I/O port mode	261
I/O wait register for DMAC (IOWR0-3), configura	ation
of	
I/O wait register for DMAC (IOWR0-3), function of	of Bits
in	
I ² C interface	5
I ² C interface register	451
immediate set/16-bit/32-bit immediate transfer	
instruction	
INIT pin input (setting linitialization reset pin)	
initialization	
input capture control register (ICS01, ICS23)	
input capture data register (IPCP0 to 3)	
input capturer, overview of	
input timing of 16-bit input capture	496
instruction cache	3
instruction cache control register (ICHCR)	58
instruction cache, configuration of	53
instruction cache, updating entries in	60
instruction format	578
instruction list, how to read	575
instruction, overview of	50
INT instruction, operation of	93
INTE instruction, operation of	93
internal architecture	48
internal clock operation	279
interrupt and NMI, level mask for	83
interrupt and timing for setting flag, occurrence	of
	379
interrupt control register (ICR)	336
interrupt control register (ICR), configuration of.	84
interrupt control register (ICR), mapping of	84
interrupt controller	4
interrupt controller register	334
interrupt controller, hardware configuration of	332
interrupt enable register (ENIR)	320

INDEX

interrupt level mask (ILM) register	83
interrupt number	330
interrupt processing	476
interrupt source and timing chart (PWM output)	
	. 303
interrupt stack	85
interrupt vector	. 548

Κ

-K lib option when using a string manipulation	
function, specification of 569)

L

40
92
81
36

Μ

main function	386
major function	332
MB91307B, pin layout of	11
MB91307R, pin layout of	12
memory load instruction	585
memory map 44	1, 75
memory store instruction	586
mode register (MODR), function of bit in	. 141
mode setting	.141
multifunctional timer, block diagram of 480,	492
multifunctional timer, configuration of	478
multifunctional timer, registers of	479
multiply instruction	. 583

Ν

NMI	342
no-coprocessor trap	95
normal branch (no delay) instruction	587
normal reset operation	103
note for use	257

0

one-shot operation	301
operating mode 14	0, 375
operation end/stopping	424
operation initialization reset (RST)	97
operation initialization reset (RST) clear seque	nce
	100
operation initialization reset (RST) state	135

operation start422
operation timing of read -> write207
ordinary bus interface203
oscillation stabilization wait reset (RST) status134
oscillation stabilization wait RUN state133
oscillation stabilization wait time, selecting102
oscillation stabilization wait, sources of101
other feature5
other instruction589
other interval timer5
other item473
outo-wait cycle timing209
overview52
overview of instruction50

Ρ

•
peripheral clock (CLKP)110
PGA-179C-A03, dimensions of9
pin function, description of15
pin layout of MB91307B11
pin layout of MB91307R12
pin state table553
pin state table, meaning of terms in552
pin/timing control register (TCR), functions of bit in
pin/tming control register (TCR), configuration of
PLL multiply-by rate
PLL operation enable
port data register (PDR), configuration of the262
PPG timer, block diagram of one channel of286
PPG timer, feature of
PPG timer, register list of
precaution on use
prefetch operation
preventing a latchup
principal operation407
priority among channel
priority decision
processing after power-on
processing of source oscillation input after power-on
program access74
program counter (PC)65
PWM cycle set register (PCSR)292
PWM duty set register (PDUT)293
PWM operation299
PWM timer register (PTMR)294

R

receive data, example of47	75
receive operation	76
reentered during transfer, if an external pin transfer	
request is43	31
register list14	18
register type14	19
register-to-register transfer instruction58	36
relationship between data bus wdth and control sign	al
18	33
releasing bus right	54
reload operation415, 41	9
reload register (UTIMR)31	1
reload timer (including one channel for REALOS)	
	.4
reset (device initialization)9	96
reset source register/watchdog timer control registe	۶r
(RSRR)11	
resource instruction59) 4
RETI instruction, operation of9) 5
RUN state (normal operation)13	33

S

save/restore processing	448
section	570
section type, restriction on	572
send operation	376
serial control register (SCR)	367
serial input data register (SIDR)/serial output da	
register(SODR)	
serial mode register (SMR)	
serial status register (SSR)	
setting a register, procedure for	
setting initialization reset (INIT)	97
setting initialization reset (INIT) clear sequence	
setting initialization reset (INIT) state	
setting PWM output to all-low or all-high, examp	
setting register, note on	
setup procedure	
shift instruction	
simulator debugger	5/3
single-shot conversion mode	358
slave address and data transfer, example of	358 474
slave address and data transfer, example of slave address detection	358 474 470
slave address and data transfer, example of slave address detection slave address mask	358 474 470 470
slave address and data transfer, example of slave address detection	358 474 470 470 471

sleep state	133
software request	410
software reset (STCR)	98
source clock	. 105
source oscillation input after power-on, processi	
specification, overview of	
stack to a little endian area, allocation of	. 569
standby control register (STCR)	. 116
standby mode (sleep/stop), return from	
standby, return from	
START condition	469
state transition request, priority of	135
step trace trap, operation of	94
STOP condition	469
stop conversion mode	359
stop mode	. 138
stop state	133
string arrangement using a string manipulation	
function, operation other	. 568
structure assignment	. 567
suppressing DMA	. 420
synchronous reset operation	. 103
synchronous write enable output, operation timin	
system stack pointer(SSP)	85

т

table base register (TBR) 86
temporary stopping 423
time base counter 128
time base counter clear register (CTBR) 121
time base counter control register (TBCR) 119
time base timer 129
timer control status register (TCCS) 482
timer data register (TCDT)
timing to clear 16-bit free-run timer 486
transfer address 408
transfer between external I/O and external memory
transfer between external I/O and external memory
transfer between external I/O and external memory
transfer between external I/O and external memory
transfer between external I/O and external memory 431 transfer count and transfer end
transfer between external I/O and external memory 431 transfer count and transfer end
transfer between external I/O and external memory 431 transfer count and transfer end
transfer between external I/O and external memory 431 transfer count and transfer end

INDEX

transfer source/transfer destination address setting
register (DMASA0 to 4/DMADA0 to 4) 402
transfer type 408

U

UART
UART register
UART, example of using
UART, selecting a clock for
undefined instruction exception, operation of94
underflow operation280
usage, recautions on
use, note for257
use, precaution on37
user interrupt/NMI, operation of
U-TIMER (UTIM)
U-TIMER baud rates and reload value, example of
setting
U-TIMER control register (UTIMC)

U-TIMER control register (UTIMC), precautions on	
	314
U-TIMER register	311
U-TIMER, overview of	310

V

variable with an initial valu	e, allocation of567
-------------------------------	---------------------

W

watchdog reset99
watchdog reset postpone register (WPR)124
wdth control signal and relationship between data bus
WE + byte control type, operation timing of205
with external wait220
without external wait219
word access197
write -> write operation208

INDEX

CM71-10114-3E

FUJITSU SEMICONDUCTOR • CONTROLLER MANUAL FR60 32-BIT MICROCONTROLLER FR Family MB91301 Series HARDWARE MANUAL April 2004 the third edition

Published	FUJITSU LIMITED	Electronic Devices
Edited	Business Promotion Dept.	